Advertisement

Exploring the Neural Bases of Primary Muscle Tension Dysphonia: A Case Study Using Functional Magnetic Resonance Imaging

Published:December 19, 2017DOI:https://doi.org/10.1016/j.jvoice.2017.11.009

      Summary

      Primary muscle tension dysphonia (pMTD) is a voice disorder that occurs in the absence of laryngeal pathology. Dysregulated activity of the paralaryngeal muscles is considered the proximal cause; however, the central origin of this aberrant laryngeal muscle activation is unclear. The Trait Theory (Roy and Bless, 2000a,b) proposed that specific personality traits can predispose one to laryngeal motor inhibition and pMTD, and this inhibition is mediated by a hyperactive “behavioral inhibition system (BIS)” composed of limbic system structures (and associated prefrontal connections). This case study used functional magnetic resonance imaging to detect brain activation changes associated with successful management of pMTD, thereby evaluating possible neural correlates of this poorly understood disorder.

      Method

      A 61-year-old woman with moderate-to-severe pMTD underwent functional magnetic resonance imaging scans before and immediately after successful treatment using manual circumlaryngeal techniques. Experimental stimuli were blocks of repeated vowel production and overt sentence reading.

      Results

      Significantly greater activation was observed pre- versus posttreatment in all regions of interest during sentence production, that is, periaqueductal gray, amygdala, hypothalamus, anterior cingulate cortex, hippocampus, dorsolateral prefrontal cortex, Brodmann area 10, and premotor and inferior sensorimotor cortex.

      Conclusions

      Our findings are compatible with overactivation of neural regions associated with the BIS (cingulate cortex, amygdala, hypothalamus, periaqueductal gray) and motor inhibition networks (eg, [pre-]supplementary motor area) along with the dorsolateral prefrontal cortex and medial prefrontal cortex. Heightened input from limbic regions combined with dysfunctional prefrontal regulation may interfere with laryngeal motor preparation, initiation, and execution thereby contributing to disordered voice in pMTD.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Voice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aronson A.E.
        • Bless D.M.
        Clinical Voice Disorders.
        Thieme, New York, NY2009
        • Butcher P.
        Psychological processes in psychogenic voice disorder.
        Eur J Disord Commun. 1995; 30: 467-474
        • Butcher P.
        • Elias A.
        • Raven R.
        Psychogenic Voice Disorders and Cognitive Behaviour Therapy.
        Singular, San Diego, CA1993
        • Roy N.
        Functional dysphonia.
        Curr Opin Otolaryngol Head Neck Surg. 2003; 11: 144-148
        • Verdolini K.
        • Rosen C.A.
        • Branski R.C.
        Classification Manual for Voice Disorders-1.
        Lawrence Erlbaum Associates, Mahwah, NJ2006
        • Morrison M.D.
        • Rammage L.A.
        Muscle misuse voice disorders: description and classification.
        Acta Otolaryngol. 1993; 113: 428-434
        • Van Houtte E.
        • Van Lierde K.
        • Claeys S.
        Pathophysiology and treatment of muscle tension dysphonia: a review of the current knowledge.
        J Voice. 2011; 25: 202-207
        • Hillman E.
        • Holmberg E.B.
        • Perkell J.S.
        • et al.
        Objective assessment of vocal hyperfunction: an experimental framework and initial results.
        J Speech Hear Res. 1989; 32: 373-392
        • Morrison M.D.
        • Nichol H.
        • Rammage L.A.
        Diagnostic criteria in functional dysphonia.
        Laryngoscope. 1986; 96: 1-8
        • Morrison M.D.
        • Rammage L.A.
        • Belisle G.M.
        • et al.
        Muscular tension dysphonia.
        J Otolaryngol. 1983; 12: 302-306
        • Koufman J.A.
        • Blalock P.D.
        Classification and approach to patients with functional voice disorders.
        Ann Otol Rhinol Laryngol. 1982; 91: 372-377
        • Koufman J.A.
        • Blalock P.D.
        Vocal fatigue and dysphonia in the professional voice user: Bogart-Bacall syndrome.
        Laryngoscope. 1988; 98: 493-498
        • Roy N.
        Primary and secondary muscle tension dysphonia.
        in: Stemple J.C. Hapner E. Voice Therapy: Clinical Studies. 4th ed. Plural, San Diego, CA2014: 27-29
        • Roy N.
        • Fetrow R.A.
        • Merrill R.M.
        • et al.
        Exploring the clinical utility of relative fundamental frequency as an objective measure of vocal hyperfunction.
        J Speech Lang Hear Res. 2016; 59: 1002-1017
        • Rammage L.A.
        • Nichol H.
        • Morrison M.D.
        The psychopathology of voice disorders.
        Hum Commun Can. 1987; 11: 21-25
        • Roy N.
        • Bless D.M.
        Toward a theory of the dispositional bases of functional dysphonia and vocal nodules: exploring the role of personality and emotional adjustment.
        in: Kent R.D. Ball M.J. Voice Quality Measurement. Singular, San Diego, CA2000: 461-480
        • Butcher P.
        • Elias A.
        • Raven R.
        • et al.
        Psychogenic voice disorder unresponsive to speech therapy: psychological characteristics and cognitive-behavior therapy.
        Br J Disord Commun. 1987; 22: 81-92
        • House A.
        • Andrews H.B.
        Life events and difficulties preceding the onset of functional dysphonia.
        J Psychosom Res. 1988; 32: 311-319
        • Baker J.
        • Ben-Tovim D.
        • Butcher A.
        • et al.
        Psychosocial risk factors which may differentiate between women with functional voice disorder, organic voice disorder and a control group.
        Int J Speech Lang Pathol. 2013; 15: 547-563
        • Roy N.
        • Bless D.M.
        • Heisey D.
        Personality and voice disorders: a superfactor trait analysis.
        J Speech Lang Hear Res. 2000; 43: 749-768
        • Roy N.
        • Bless D.M.
        Personality traits and psychological factors in voice pathology: a foundation for future research.
        J Speech Lang Hear Res. 2000; 43: 737-748
        • Roy N.
        • Bless D.M.
        • Heisey D.
        Personality and voice disorders: a multitrait-multidisorder analysis.
        J Voice. 2000; 14: 521-548
        • Kozlowska K.
        • Walker P.
        • McLean L.
        • et al.
        Fear and the defense cascade: clinical implications and management.
        Harv Rev Psychiatry. 2015; 23: 263-287
        • Gray J.A.
        The Neuropsychology of Anxiety.
        Oxford University Press, New York, NY1982
        • McNaughton N.
        • Corr P.J.
        A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance.
        Neurosci Biobehav Rev. 2004; 28: 285-305
        • Amodio D.M.
        • Master S.L.
        • Yee C.M.
        • et al.
        Neurocognitive components of the behavioral inhibition and activation systems: implications for theories of self-regulation.
        Psychophysiology. 2008; 45: 11-19
        • Dietrich M.
        • Verdolini Abbott K.
        Vocal function in introverts and extraverts during a psychological stress reactivity protocol.
        J Speech Lang Hear Res. 2012; 55: 973-987
        • Dietrich M.
        • Verdolini Abbott K.
        Psychobiological stress reactivity and personality in persons with high and low stressor-induced extralaryngeal reactivity.
        J Speech Lang Hear Res. 2014; 57: 2076-2089
        • Helou L.B.
        Intrinsic Laryngeal Muscle Response to a Speech Preparation Stressor: Personality and Autonomic Predictors.
        Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA2014
        • van Mersbergen M.
        • Patrick C.
        • Glaze L.
        Functional dysphonia during mental imagery: testing the trait theory of voice disorders.
        J Speech Lang Hear Res. 2008; 51: 1405-1423
        • Jürgens U.
        The neural control of vocalization in mammals: a review.
        J Voice. 2009; 23: 1-10
        • Simonyan K.
        • Horwitz B.
        Laryngeal motor cortex and control of speech in humans.
        Neuroscientist. 2011; 17: 197-208
        • Holstege G.
        • Subramanian H.H.
        Two different motor systems are needed to generate human speech.
        J Comp Neurol. 2016; 524: 1558-1577
        • Jürgens U.
        Neural pathways underlying vocal control.
        Neurosci Biobehav Rev. 2002; 26: 235-258
        • Simonyan K.
        • Ackermann H.
        • Chang E.F.
        • et al.
        New developments in understanding the complexity of human speech production.
        J Neurosci. 2016; 36: 11440-11448
        • Paus T.
        Primate anterior cingulate cortex: where motor control, drive and cognition interface.
        Nat Rev Neurosci. 2001; 2: 417-424
        • Simonyan K.
        The laryngeal motor cortex: its organization and connectivity.
        Curr Opin Neurobiol. 2014; 28c: 15-21
        • Fuertinger S.
        • Horwitz B.
        • Simonyan K.
        The functional connectome of speech control.
        PLoS Biol. 2015; 13: e1002209
        • Ludlow C.L.
        Central nervous system control of the laryngeal muscles in humans.
        Respir Physiol Neurobiol. 2005; 147: 205-222
        • Ludlow C.L.
        • Loucks T.
        • Simonyan K.
        • et al.
        Brain imaging of voice, swallow, and other upper airway functions.
        in: Ingham R.J. Neuroimaging in Communication Sciences and Disorders. Plural, San Diego, CA2008: 87-127
        • Simonyan K.
        • Ostuni J.
        • Ludlow C.L.
        • et al.
        Functional but not structural networks of the human laryngeal motor cortex show left hemispheric lateralization during syllable but not breathing production.
        J Neurosci. 2009; 29: 14912-14923
        • Fairbanks G.
        Voice and Articulation Drill Book.
        2nd ed. Harper and Row, New York, NY1960
        • Awan S.N.
        • Roy N.
        • Zhang D.
        • et al.
        Validation of the Cepstral Spectral Index of Dysphonia (CSID) as a screening tool for voice disorders: development of clinical cutoff scores.
        J Voice. 2016; 30: 130-144
        • Awan S.N.
        • Roy N.
        • Jetté M.E.
        • et al.
        Quantifying dysphonia severity using a spectral/cepstral-based acoustic index: comparisons with auditory-perceptual judgements from the CAPE-V.
        Clin Linguist Phon. 2010; 24: 742-758
        • Jacobson B.H.
        • Johnson A.
        • Grywalski C.
        • et al.
        The Voice Handicap Index (VHI): development and validation.
        Am J Speech Lang Pathol. 1997; 6: 66-70
        • Simonyan K.
        • Fuertinger S.
        Speech networks at rest and in action: interactions between functional brain networks controlling speech production.
        J Neurophysiol. 2015; 113: 2967-2978
        • Roy N.
        • Bless D.M.
        Manual circumlaryngeal techniques in the assessment and treatment of voice disorders.
        Curr Opin Otolaryngol Head Neck Surg. 1998; 6: 151-155
        • Roy N.
        Assessment and treatment of musculoskeletal tension in hyperfunctional voice disorders.
        Int J Speech Lang Pathol. 2008; 10: 195-209
        • Dietrich M.
        • Andreatta R.D.
        • Jiang Y.
        • et al.
        Preliminary findings on the relation between the personality trait of stress reaction and the central neural control of human vocalization.
        Int J Speech Lang Pathol. 2012; 14: 377-389
        • Brown S.
        • Ngan E.
        • Liotti M.
        A larynx area in the human motor cortex.
        Cereb Cortex. 2008; 18: 837-845
        • Brown S.
        • Laird A.R.
        • Pfordresher P.Q.
        • et al.
        The somatotopy of speech: phonation and articulation in the human motor cortex.
        Brain Cogn. 2009; 70: 31-41
        • Linnman C.
        • Moulton E.A.
        • Barmettler G.
        • et al.
        Neuroimaging of the periaqueductal gray: state of the field.
        Neuroimage. 2012; 60: 505-522
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders: DSM-5.
        5th ed. American Psychiatric Association Publishing, Arlington, VA2013
        • Boeckle M.
        • Liegl G.
        • Jank R.
        • et al.
        Neural correlates of conversion disorder: overview and meta-analysis of neuroimaging studies on motor conversion disorder.
        BMC Psychiatry. 2016; 16: 195
        • Hassa T.
        • Sebastian A.
        • Liepert J.
        • et al.
        Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder.
        Neuroimage Clin. 2017; 15: 143-150
        • Ejareh Dar M.
        • Kanaan R.A.
        Uncovering the etiology of conversion disorder: insights from functional neuroimaging.
        Neuropsychiatr Dis Treat. 2016; 12: 143-153
        • Aybek S.
        • Nicholson T.R.
        • Zelaya F.
        • et al.
        Neural correlates of recall of life events in conversion disorder.
        JAMA Psychiatry. 2014; 71: 52-60
        • Aybek S.
        • Nicholson T.R.
        • O'Daly O.
        • et al.
        Emotion-motion interactions in conversion disorder: an fMRI study.
        PLoS ONE. 2015; 10 (e0123273)
        • Voon V.
        • Brezing C.
        • Gallea C.
        • et al.
        Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.
        Mov Disord. 2011; 26: 2396-2403
        • Bryant R.A.
        • Das P.
        The neural circuitry of conversion disorder and its recovery.
        J Abnorm Psychol. 2012; 121: 289-296
        • Voon V.
        • Brezing C.
        • Gallea C.
        • et al.
        Emotional stimuli and motor conversion disorder.
        Brain. 2010; 133: 1526-1536
        • Kober H.
        • Barrett L.F.
        • Joseph J.
        • et al.
        Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies.
        Neuroimage. 2008; 42: 998-1031
        • Davidson R.J.
        Well-being and affective style: neural substrates and biobehavioural correlates.
        Philos Trans R Soc B Biol Sci. 2004; 359: 1395-1411
        • Roelofs K.
        Freeze for action: neurobiological mechanisms in animal and human freezing.
        Philos Trans R Soc Lond B Biol Sci. 2017; 372 (pii: 20160206)
        • Nachev P.
        • Kennard C.
        • Husain M.
        Functional role of the supplementary and pre-supplementary motor areas.
        Nat Rev Neurosci. 2008; 9: 856-869
        • Picard N.
        • Strick P.L.
        Imaging the premotor areas.
        Curr Opin Neurobiol. 2001; 11: 663-672
        • Wager T.D.
        • van Ast V.A.
        • Hughes B.L.
        • et al.
        Brain mediators of cardiovascular responses to social threat, Part II: prefrontal-subcortical pathways and relationship with anxiety.
        Neuroimage. 2009; 47: 836-851
        • Etkin A.
        • Egner T.
        • Kalisch R.
        Emotional processing in anterior cingulate and medial prefrontal cortex.
        Trends Cogn Sci. 2011; 15: 85-93
        • Aron A.R.
        • Robbins T.W.
        • Poldrack R.A.
        Inhibition and the right inferior frontal cortex: one decade on.
        Trends Cogn Sci. 2014; 18: 177-185
        • Miller E.K.
        • Cohen J.D.
        An integrative theory of prefrontal cortex function.
        Annu Rev Neurosci. 2001; 24: 167-202
        • van Beilen M.
        • Vogt B.A.
        • Leenders K.L.
        Increased activation in cingulate cortex in conversion disorder: what does it mean?.
        J Neurol Sci. 2010; 289: 155-158
        • Vogt B.A.
        Midcingulate cortex: structure, connections, homologies, functions and diseases.
        J Chem Neuroanat. 2016; 74: 28-46
        • Spengler F.B.
        • Becker B.
        • Kendrick K.M.
        • et al.
        Emotional dysregulation in psychogenic voice loss.
        Psychother Psychosom. 2017; 86: 121-123
        • Kryshtopava M.
        • Van Lierde K.
        • Meerschman I.
        • et al.
        Brain activity during phonation in women with muscle tension dysphonia: an fMRI study.
        J Voice. 2017; (pii: S0892-1997(16)30505-7)
        • Altman K.W.
        • Atkinson C.
        • Lazarus C.
        Current and emerging concepts in muscle tension dysphonia: a 30-month review.
        J Voice. 2005; 19: 261-267
        • Seifert E.
        • Kollbrunner J.
        Stress and distress in non-organic voice disorders.
        Swiss Med Wkly. 2005; 135: 387-397
        • Freidl W.
        • Friedrich G.
        • Egger J.
        • et al.
        Zur Psychogenese funktioneller dysphonien.
        Folia Phoniatr (Basel). 1993; 45: 10-13
        • Schulz G.M.
        • Varga M.
        • Jeffires K.
        • et al.
        Functional neuroanatomy of human vocalization: an H215O PET study.
        Cereb Cortex. 2005; 15: 1835-1847
        • Loucks T.M.J.
        • Poletto C.J.
        • Simonyan K.
        • et al.
        Human brain activation during phonation and exhalation: common volitional control for two upper airway functions.
        Neuroimage. 2007; 36: 131-143
        • Olthoff A.
        • Baudewig J.
        • Kruse E.
        • et al.
        Cortical sensorimotor control in vocalization: a functional magnetic resonance imaging study.
        Laryngoscope. 2008; 118: 2091-2096