Summary
Objectives and Hypothesis
A novel, silk protein-based injectable filler was engineered with the intention of
vocal fold augmentation as its eventual intended use. This injectable filler leverages
the unique properties of silk protein's superior biocompatibility, mechanical tunability,
and slow in vivo degradation to one day better serve the needs of otolaryngologists. This paper intends
to demonstrate the mechanical properties of the proposed novel injectable and to evaluate
its longevity in animal models.
Materials and Methods
Experimental. The mechanical properties of silk bulking agents were determined to
characterize deformation resistance and recovery compared with commercially available
calcium hydroxylapatite through rheologic testing. Fresh porcine vocal fold tissue
was used for injectable placement to simulate the mechanical outcomes of native tissue
after bulking procedures. In vivo subcutaneous rodent implantation examined immune response, particle migration, and
volume retention.
Results
Porous, elastomeric silk microparticles demonstrate high recovery (>90% original volume)
from compressive strain and mimic the native storage modulus of soft tissues (1–3 kPa).
Injectable silk causes only a slight increase in porcine vocal fold stiffness immediately
after injection (20%), preserving the native mechanics of bulked tissue. In the subcutaneous
rat model, silk demonstrated biocompatibility and slow degradation, thus enabling
host cell integration and tissue deposition.
Conclusions
The presented novel silk injectable material demonstrates favorable qualities for
a vocal fold injection augmentation material. An in vivo long-term canine study is planned.
Key Words
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of VoiceAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Vocal fold injection: review of indications, techniques, and materials for augmentation.Clin Exp Otorhinolaryngol. 2010; 3: 177-182https://doi.org/10.3342/ceo.2010.3.4.177
- Laryngoplasty with hyaluronic acid in patients with unilateral vocal fold paralysis.J Voice. 2012; 26: 785-791https://doi.org/10.1016/j.jvoice.2011.11.007
- “Finding a voice”: imaging features after phonosurgical procedures for vocal fold paralysis.AJNR Am J Neuroradiol. 2016; 37: 1574-1580https://doi.org/10.3174/ajnr.A4781
- New opportunities for an ancient material.Science. 2010; 329: 528-531https://doi.org/10.1126/science.1188936
- Comparative tissue response to six suture materials in rabbit cornea, sclera, and ocular muscle.Am J Ophthalmol. 1977; 84: 224-233
- Delayed foreign-body reaction to silk sutures in pediatric neurosurgical patients.Childs Nerv Syst. 1987; 3: 375-378https://doi.org/10.1007/BF00270712
- Silk-based biomaterials.Biomaterials. 2003; 24: 401-416
- Equine model for soft-tissue regeneration.J Biomed Mater Res B Appl Biomater. 2015; 103: 1217-1227https://doi.org/10.1002/jbm.b.33299
- Soft tissue augmentation using silk gels: an in vitro and in vivo study.J Periodontol. 2009; 80: 1852-1858https://doi.org/10.1902/jop.2009.090231
- Sustained volume retention in vivo with adipocyte and lipoaspirate seeded silk scaffolds.Biomaterials. 2013; 34: 2960-2968https://doi.org/10.1016/j.biomaterials.2013.01.058
- An evaluation of SERI surgical scaffold for soft-tissue support and repair in an ovine model of two-stage breast reconstruction.Plast Reconstr Surg. 2014; 134: 700e-704ehttps://doi.org/10.1097/PRS.0000000000000697
- In vivo characterization of the integration and vascularization of a silk-derived surgical scaffold.J Plast Reconstr Aesthet Surg. 2016; 69: 1141-1150https://doi.org/10.1016/j.bjps.2016.01.017
- Materials fabrication from Bombyx mori silk fibroin.Nat Protoc. 2011; 6: 1612-1631https://doi.org/10.1038/nprot.2011.379
- Mechanical characterization of vocal fold tissue: a review study.J Voice. 2014; 28: 657-667https://doi.org/10.1016/j.jvoice.2014.03.001
- Viscoelasticity of hyaluronan and nonhyaluronan based vocal fold injectables: implications for mucosal versus muscle use.Laryngoscope. 2007; 117: 516-521https://doi.org/10.1097/MLG.0b013e31802e9291
- Lyophilized silk sponges: a versatile biomaterial platform for soft tissue engineering.ACS Biomater Sci Eng. 2015; 1: 260-270https://doi.org/10.1021/ab500149p
- Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.Nat Biotechnol. 2005; 23: 47-55https://doi.org/10.1038/nbt1055
- Viscoelastic properties of rabbit vocal folds after augmentation.Otolaryngol Head Neck Surg. 2003; 128: 401-406https://doi.org/10.1067/mhn.2003.96
- Particulate silicone for use in periurethral injections: local tissue effects and search for migration.J Urol. 1995; 153: 2039-2043
- Mammalian response to subdermal implantation of textured microimplants.Aesthetic Plast Surg. 1992; 16: 83-90
- Response to subdermal implantation of textured microimplants in humans.Aesthetic Plast Surg. 1992; 16: 227-230
- Textured polydimethylsiloxane elastomers in the human larynx: safety and efficiency of use.J Biomed Mater Res. 2000; 53: 646-650
- Silk as a biomaterial.Prog Polym Sci. 2007; 32: 991-1007https://doi.org/10.1016/j.progpolymsci.2007.05.013.Silk
- Silk fibroin biomaterials for tissue regenerations.Adv Drug Deliv Rev. 2013; 65: 457-470https://doi.org/10.1016/j.addr.2012.09.043
- Regeneration of aged vocal folds with basic fibroblast growth factor in a rat model: a preliminary report.Ann Otol Rhinol Laryngol. 2005; 114: 304-308https://doi.org/10.1177/000348940511400409
- Viscoelastic properties of phonosurgical biomaterials at phonatory frequencies.Laryngoscope. 2010; 120: 764-768https://doi.org/10.1002/lary.20816
- Viscosity of materials for laryngeal injection: a review of current knowledge and clinical implications.J Voice. 2013; 27: 119-123https://doi.org/10.1016/j.jvoice.2012.07.011
- Comparison of the rheological properties of viscosity and elasticity in two categories of soft tissue fillers: calcium hydroxylapatite and hyaluronic acid.Dermatol Surg. 2010; 36: 1859-1865https://doi.org/10.1111/j.1524-4725.2010.01743.x
- Rheological characterization of vocal folds after injection augmentation in a preliminary animal study.J Bioact Compat Polym. 2004; 19: 331-341https://doi.org/10.1177/0883911504045229
- The use of injectable calcium hydroxylapatite in the surgically pretreated larynx with glottal insufficiency.Laryngoscope. 2016; 127: 1125-1130https://doi.org/10.1002/lary.26261
- Long-term results of calcium hydroxylapatite for vocal fold augmentation.Laryngoscope. 2011; 121: 313-319https://doi.org/10.1002/lary.21258
- Clinical, histologic and electron microscopic findings after injection of a calcium hydroxylapatite filler.J Cosmet Laser Ther. 2004; 6: 223-226https://doi.org/10.1080/147641704100003048
- Vocal fold augmentation with calcium hydroxylapatite: twelve-month report.Laryngoscope. 2009; 119: 1033-1041https://doi.org/10.1002/lary.20126
- In vivo bioresponses to silk proteins.Biomaterials. 2015; 71: 145-157https://doi.org/10.1016/j.biomaterials.2015.08.039
- Macrophages in tissue repair, regeneration, and fibrosis.Immunity. 2016; 44: 450-462https://doi.org/10.1016/j.immuni.2016.02.015
Article info
Publication history
Published online: March 30, 2018
Accepted:
January 18,
2018
Footnotes
This work was performed at Sofregen Inc., 200 Boston Avenue, Medford MA, 02155.
Financial disclosure: Thomas Carroll discloses consulting fees from Sofregen Inc.
Identification
Copyright
© 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.