Summary
Objective
This study aims to investigate the feasibility of pig arytenoid cartilage as an animal
model for simulating arytenoidectomy under microlaryngoscope by comparing the similarities
and differences between pig arytenoid cartilage and human arytenoid cartilage.
Study Design
This is a methodological study on the excised pig arytenoid cartilage and human arytenoid
cartilage.
Methods
Five excised human adult cadaver larynges and five adult excised porcine larynges
were dissected and all the soft tissue and mucous membrane attached to the arytenoid
and cricoarytenoid joint were removed. The anatomical structure and morphology of
the arytenoid cartilage were observed and measured with a vernier caliper. Measurements
included cricoarytenoid articular facet major and minor diameter, cricoarytenoid articular
facet center distance, cricoarytenoid facet major and minor diameter, length of vocal
process and muscular process, and distance between tip of vocal process, muscular
process, and junction/apex of arytenoid cartilage. Data were then compared across
these major anatomic markers using student t test.
Results
The gross anatomy of the pig arytenoid cartilage was similar to the human. However,
the size of the pig larynx arytenoid cartilage was obviously larger in total, and
there was statistical significance for almost all measurements (P < 0.05), except the mean value of cricoarytenoid articular facet center distance,
the cricoarytenoid facet minor diameter, and the length of vocal process of pig and
human, without statistically significant difference (P > 0.05). Moreover, the biggest differences between the pig arytenoid cartilage and
the human arytenoid cartilage were that the pig arytenoid cartilage apex had the angle
winding structure toward the back, and that the posterior part of the bilateral arytenoid
cartilages was partially connected. Whereas after the angle winding was removed from
the junction, pig arytenoid cartilage and human arytenoid cartilage were shaped both
like a triangular pyramid.
Conclusion
The data of this metric comparative study indicate that pig arytenoid, after resecting
the angle winding structure and incising the interarytenoid cartilage, is similar
to the human's. Therefore, pig larynx is an appropriate experimental model for endoscopic
arytenoidectomy. In addition, regarding the pig laryngeal angle winding structure,
we still require further basic and clinical research to clarify its physiological
function and significance.
Key Words
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of VoiceAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Unraveling the swine genome: implications for human health.Annu Rev Anim Biosci. 2015; 3: 219-244
- Swine as models in biomedical research and toxicology testing.Vet Pathol. 2011; 49: 344-356
- The role of genetically engineered pigs in xenotransplantation research.J Pathol. 2016; 238: 288-299
- Animal model for training and improvement of the surgical skills in endolaryngeal microsurgery.J Voice. 2012; 26: 351-357
- Total and partial laser arytenoidectomy for bilateral vocal fold paralysis.Biomed Res Int. 2016; 2016: 3601612
- Comparative histology and vibration of the vocal folds: implications for experimental studies in microlaryngeal surgery.Laryngoscope. 2000; 110: 814-824
- Frequency characteristics in animal species typically used in laryngeal research: an exploratory investigation.J Voice. 2016; 30: 717-767
- Glottal airflow resistance in excised pig, sheep, and cow larynges.J Voice. 2009; 23: 40-50
- Comparative anatomy of human and sheep laryngeal skeleton.Acta Otolaryngol. 1988; 105: 155-162
- Comparison of the phonation-related structures among pig, dog, white-tailed deer, and human larynges.Ann Otol Rhinol Laryngol. 2016; 110: 1120-1125
- Comparison of human, canine, and ovine laryngeal dimensions.Ann Otol Rhinol Laryngol. 2004; 113: 60-68
- Geometric characterization of the laryngeal cartilage framework for the purpose of biomechanical modeling.Ann Otol Rhinol Laryngol. 2001; 110: 1154-1161
- An affordable model for endolaryngeal phonomicrosurgery: chicken wings and foam pipe insulation tube.Laryngoscope. 2014; 124: 1906-1908
- Angiogenesis in costal cartilage graft laryngotracheoplasty: a corrosion casting study in piglets.Laryngoscope. 2014; 124: 2411-2417
- Effect of vocal fold injection of cidofovir and bevacizumab in a porcine model.JAMA Otolaryngol Head Neck Surg. 2014; 140: 155
- Evaluation of a novel Surgicric®cricothyroidotomy device for emergency tracheal access in a porcine model.Anaesthesia. 2016; 71: 177-184
- Autologous fat injection therapy including a high concentration of adipose-derived regenerative cells in a vocal fold paralysis model: animal pilot study.J Laryngol Otol. 2016; 130: 914-922
- Development of a microclip for laryngeal microsurgery: initial animal studies.Laryngoscope. 2012; 122: 1809-1814
- Pre-clinical evaluation of a minimally invasive laryngeal pacemaker system in mini-pig.Eur Arch Otorhinolaryngol. 2016; 273: 151-158
- Developing a porcine model for study of vocal fold scar.J Voice. 2012; 26: 706-710
- Determination of strain field on the superior surface of excised larynx vocal folds using DIC.J Voice. 2013; 27: 659-667
- Derivation and characterization of porcine vocal fold extracellular matrix scaffold.Laryngoscope. 2016; 126: 928-935
- Thyroarytenoid cross-innervation by the external branch of the superior laryngeal nerve in the porcine model.Laryngoscope. 2015; 125: 177-179
- Histomorphometric analysis of collagen and elastic fibres in the cranial and caudal fold of the porcine glottis.Anat Histol Embryol. 2015; 44: 186-199
- External branch of the superior laryngeal nerve mediated glottic closing force in the porcine model.Ann Otol Rhinol Laryngol. 2016; 125: 421-424
- Intrinsic muscles and distribution of the recurrent laryngeal nerve in the pig larynx.Eur Arch Otorhinolaryngol. 2005; 262: 281-285
- Quantification of porcine vocal fold geometry.J Voice. 2016; 30: 416-426
- A metrical study of the laryngeal skeleton in adult Nigerians.J Anat. 1990; 171: 187-191
- A morphometric study of the larynx.J Voice. 2014; 28: 668-672
- Dimensions of the laryngeal framework in adults.Surg Radiol Anat. 1994; 16: 31-36
- Morphometric measurements of the cartilaginous larynx: an anatomic correlate of laryngeal surgery.Head Neck. 1999; 21: 743-750
- Morphometric study of cricoid cartilages in Western India.Australas Med J. 2011; 4: 542-547
Article info
Publication history
Published online: July 15, 2018
Accepted:
February 20,
2018
Footnotes
This research was presented on Sunday, December 3, 2017, at the 2017 Voice Foundation Symposium in China.
This study was supported by the National Natural Science Foundation of China (grant number 81271094) and the Shanghai Science and Technology Committee (grant number 17441901600).
Identification
Copyright
© 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.