Properties of a Novel Animal Model of LPR

Published:February 18, 2020DOI:https://doi.org/10.1016/j.jvoice.2020.01.021

      Summary

      Background

      Few satisfactory animal models of laryngopharyngeal reflux (LPR) is available. Interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF) may be associated with the pathogenesis of LPR injuries and laryngeal carcinomas.

      Objectives

      To establish an animal model of LPR and to explore the related pathological changes and cytokine expression in the vocal cord tissue.

      Methods

      Twenty rabbits were divided into experimental and control groups. Dilatation of the upper and lower esophageal sphincter were carried out in the experimental group. The pH of the pharynx, pathological, and ultrastructural changes of the laryngeal tissue, and expression of IL-8 and VEGF were compared between the experimental group and controls.

      Results

      pH monitoring results and the dilated intercellular space of the vocal cord mucosa showed that the experimental group developed laryngopharyngeal reflux. There were significant differences in the immunohistochemical staining scores of both IL-8 (P = 0.015) and VEGF (P = 0.007) between the experimental and control groups in the vocal cord tissue.

      Conclusions

      We successfully established a model of LPR, showing histopathological and ultrastructural changes consistent with the disease. The expression of IL-8 and VEGF may increase during the pathogenesis of LPR.

      Key Words

      To read this article in full you will need to make a payment
      Subscribe to Journal of Voice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Salihefendic N
        • Zildzic M
        • Cabric E
        Laryngopharyngeal reflux disease - LPRD.
        Med Arch. 2017; 71: 215-218
        • Vakil N
        • van Zanten SV
        • Kahrilas P
        • et al.
        • Global Consensus G
        The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus.
        Am J Gastroenterol. 2006; 101 (;quiz 1943): 1900-1920
        • Szczesniak MM
        • Williams RB
        • Cook IJ
        Mechanisms of esophago-pharyngeal acid regurgitation in human subjects.
        PLoS One. 2011; 6: e22630
        • Hu Y
        • Xu XB
        • Chen SY
        • et al.
        Laryngoscopy findings and histological results in a rabbit gastroesophageal reflux model.
        Eur Arch Otorhinolaryngol. 2012; 269: 1939-1944
        • Page AJ
        • O'Donnell TA
        • Blackshaw LA
        P2X purinoceptor-induced sensitization of ferret vagal mechanoreceptors in oesophageal inflammation.
        J Physiol. 2000; 523(Pt 2): 403-411
        • Lou Z
        • Xue C
        • Kang J
        • et al.
        Establishment of a novel and effective reflux laryngitis model in rabbits: a preliminary study.
        Eur Arch Otorhinolaryngol. 2019; 276: 175-183
        • Wood JM
        • Hussey DJ
        • Woods CM
        • et al.
        Biomarkers and laryngopharyngeal reflux.
        J Laryngol Otol. 2011; 125: 1218-1224
        • Oh DS
        • DeMeester SR
        • Vallbohmer D
        • et al.
        Reduction of interleukin 8 gene expression in reflux esophagitis and Barrett's esophagus with antireflux surgery.
        Arch Surg. 2007; 142 (;discussion 559–560)554559
        • Isomoto H
        • Wang AP
        • Mizuta Y
        • et al.
        Elevated levels of chemokines in esophageal mucosa of patients with reflux esophagitis.
        Am J Gastroenterol. 2003; 98: 551-556
        • Langevin SM
        • Michaud DS
        • Marsit CJ
        • et al.
        Gastric reflux is an independent risk factor for laryngopharyngeal carcinoma.
        Cancer Epidem Biomar. 2013; 22: 1061-1068
        • Tan JJ
        • Wang L
        • Mo TT
        • et al.
        Pepsin promotes IL-8 signaling-induced epithelial-mesenchymal transition in laryngeal carcinoma.
        Cancer Cell Int. 2019; 19: 64
        • Zhang QY
        • Agoston AT
        • Pham TH
        • et al.
        Acidic bile salts induce epithelial to mesenchymal transition via VEGF signaling in non-neoplastic Barrett's Cells.
        Gastroenterology. 2019; 156: 130-144
        • Jing Z
        • Xu H
        • Chen X
        • et al.
        The proton-sensing G-protein coupled receptor GPR4 promotes angiogenesis in head and neck cancer.
        PLoS One. 2016; 11e0152789
        • Sawatsubashi M
        • Yamada T
        • Fukushima N
        • et al.
        Association of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell carcinoma.
        Virchows Arch. 2000; 436: 243-248
        • Ayazi S
        • Lipham JC
        • Hagen JA
        • et al.
        A new technique for measurement of pharyngeal pH: normal values and discriminating pH threshold.
        J Gastrointest Surg. 2009; 13: 1422-1429
        • Franchi A
        • Brogelli B
        • Massi D
        • et al.
        Dilation of intercellular spaces is associated with laryngo-pharyngeal reflux: an ultrastructural morphometric analysis of laryngeal epithelium.
        Eur Arch Oto-Rhino-L. 2007; 264: 907-911
        • Han SY
        • Kim GH
        Clinical manifestations of laryngopharyngeal reflux.
        J Neurogastroenterol Motil. 2016; 22: 351-352
        • Li YD
        • Cheng YS
        • Li MH
        • et al.
        Temporary self-expanding metallicstents and pneumatic dilation for the treatment of achalasia: a prospective study with a long-term follow-up.
        Dis Esophagus. 2010; 23: 361-367
        • Graziani L
        • Silvestro A
        • Bertone V
        • et al.
        Percutaneous transluminal angioplasty is feasible and effective in patients on chronic dialysis with severe peripheral artery disease.
        Nephrol Dial Transplant. 2007; 22: 1144-1149
        • Remick DG
        Interleukin-8.
        Crit Care Med. 2005; 33: S466-S467
        • Reichel O
        • Hagedorn H
        • Berghaus A
        Diagnosis and treatment of laryngopharyngeal reflux.
        Laryngorhinootologie. 2006; 85 (;quiz 925–916): 919-924
        • Chung JH
        • Tae K
        • Lee YS
        • et al.
        The significance of laryngopharyngeal reflux in benign vocal mucosal lesions.
        Otolaryngol Head Neck Surg. 2009; 141: 369-373
        • Copper MP
        • Smit CF
        • Stanojcic LD
        • et al.
        High incidence of laryngopharyngeal reflux in patients with head and neck cancer.
        Laryngoscope. 2000; 110: 1007-1011
        • Calabrese C
        • Fabbri A
        • Bortolotti M
        • et al.
        Dilated intercellular spaces as a marker of oesophageal damage: comparative results in gastro-oesophageal reflux disease with or without bile reflux.
        Aliment Pharm Ther. 2003; 18: 525-532
        • Caviglia R
        • Ribolsi M
        • Maggiano N
        • et al.
        Dilated intercellular spaces of esophageal epithelium in nonerosive reflux disease patients with physiological esophageal acid exposure.
        Am J Gastroenterol. 2005; 100: 543-548
        • Lamouille S
        • Xu J
        • Derynck R
        Molecular mechanisms of epithelial-mesenchymal transition.
        Nat Rev Mol Cell Bio. 2014; 15: 178-196
        • Shimazu R
        • Kusano K
        • Kuratomi Y
        • et al.
        Histological changes of the pharynx and larynx in rats with chronic acid reflux esophagitis.
        Acta Otolaryngol. 2009; 129: 886-892
        • Waugh DJ
        • Wilson C
        The interleukin-8 pathway in cancer.
        Clin Cancer Res. 2008; 14: 6735-6741
        • Carmeliet P
        VEGF as a key mediator of angiogenesis in cancer.
        Oncology-Basel. 2005; 69: 4-10
        • Fukumura D
        • Xu L
        • Chen Y
        • et al.
        Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo.
        Cancer Res. 2001; 61: 6020-6024