Advertisement
Research Article| Volume 37, ISSUE 2, P302.e1-302.e12, March 2023

Download started.

Ok

Laryngeal Sensory Symptoms in Spasmodic Dysphonia

Published:January 20, 2021DOI:https://doi.org/10.1016/j.jvoice.2020.12.047

      Summary

      Objective

      The purpose of this research was to determine whether an association between laryngeal hypersensitivity (LH) and spasmodic dysphonia (SD) exists using the LH Questionnaire (LHQ). This study also explored the prevalence of self-reported upper respiratory infection (URI) at the time of SD onset across SD phenotypes.

      Methods

      Individuals with and without SD were recruited to complete an online survey measure. All respondents provided demographic information and completed the LHQ. Participants with SD were also asked to provide information about their diagnosed SD subtype and pattern of onset, including whether onset was associated with a URI. The percentage of respondents with and without SD who were classified with LH was determined based on the LHQ. Scores on the LHQ were also compared between the non-SD and the SD groups, as well as between SD phenotypes (adductor SD, abductor SD, and mixed)).

      Results and Conclusions

      Significant associations were found between ADSD and LH, mixed SD and LH, and URI at time of SD onset and increased severity of LH symptoms. These findings suggest that laryngeal sensory symptoms may potentially contribute to or result from motor spasms in SD and/or have implications for its pathophysiology.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Voice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Aronson AE
        • Brown JR
        • Litin EM
        • et al.
        Spastic dysphonia. I. Voice, neurologic, and psychiatric aspects.
        J Speech Hear Disord. 1968; 33: 203-218https://doi.org/10.1044/jshd.3303.203
        • Blitzer A
        • Lovelace RE
        • Fahn S
        • et al.
        Electromyographic findings in focal laryngeal dystonia (spastic dysphonia).
        Ann Otol Rhinol Laryngol. 1985; 94: 591-594https://doi.org/10.1177/000348948509400614
        • Nash EA
        • Ludlow CL.
        Laryngeal muscle activity during speech breaks in adductor spasmodic dysphonia.
        Laryngoscope. 1996; 106: 484-489https://doi.org/10.1097/00005537-199604000-00017
        • Stemple J
        • Roy N
        • Klaben B.
        Clinical Voice Pathology: Theory and Management.
        6th ed. Plural Publishing, 2018
        • Ludlow CL
        • Adler CH
        • Berke GS
        • et al.
        Research priorities in Spasmodic dysphonia.
        Otolaryngol Head Neck Surg. 2008; 139: 495-505https://doi.org/10.1016/j.otohns.2008.05.624
        • Castelon Konkiewitz E
        • Trender-Gerhard I
        • Kamm C
        • et al.
        Service-based survey of dystonia in Munich.
        Neuroepidemiology. 2002; 21: 202-206https://doi.org/10.1159/000059525
        • Schweinfurth JM
        • Billante M
        • Courey MS.
        Risk factors and demographics in patients with spasmodic dysphonia.
        Laryngoscope. 2002; 112: 220-223https://doi.org/10.1097/00005537-200202000-00004
        • Childs L
        • Rickert S
        • Murry T
        • et al.
        Patient perceptions of factors leading to spasmodic dysphonia: a combined clinical experience of 350 patients.
        Laryngoscope. 2011; 121: 2195-2198https://doi.org/10.1002/lary.22168
        • Tanner K
        • Roy N
        • Merrill RM
        • et al.
        Case-control study of risk factors for spasmodic dysphonia: a comparison with other voice disorders.
        Laryngoscope. 2012; 122: 1082-1092https://doi.org/10.1002/lary.22471
        • de Lima Xavier L
        • Simonyan K.
        The extrinsic risk and its association with neural alterations in spasmodic dysphonia.
        Park Relat Disord. 2019; 65: 117-123https://doi.org/10.1016/j.parkreldis.2019.05.034
        • Ludlow CL
        • Yamashita T
        • Schulz GM
        • et al.
        Abnormalities in long latency responses to superior laryngeal nerve stimulation in adductor spasmodic dysphonia.
        Ann Otol Rhinol Laryngol. 1995; 104: 928-935https://doi.org/10.1177/000348949510401203
        • Deleyiannis FWB
        • Gillespie M
        • Yamashita T
        • et al.
        Laryngeal long latency response conditioning in abductor spasmodic dysphonia.
        Ann Otol Rhinol Laryngol. 1999; 108: 612-619https://doi.org/10.1177/000348949910800615
        • Haslinger B
        • Erhard P
        • Dresel C
        • et al.
        Silent event-related” fMRI reveals reduced sensorimotor activation in laryngeal dystonia.
        Neurology. 2005; 65: 1562-1569https://doi.org/10.1212/01.wnl.0000184478.59063.db
        • Simonyan K
        • Tovar-Moll F
        • Ostuni J
        • et al.
        Focal white matter changes in spasmodic dysphonia: a combined diffusion tensor imaging and neuropathological study.
        Brain. 2008; 131: 447-459https://doi.org/10.1093/brain/awm303
        • Simonyan K
        • Ludlow CL.
        Abnormal activation of the primary somatosensory cortex in spasmodic dysphonia: an fMRI study.
        Cereb Cortex. 2010; 20: 2749-2759https://doi.org/10.1093/cercor/bhq023
        • Walter U
        • Blitzer A
        • Benecke R
        • et al.
        Sonographic detection of basal ganglia abnormalities in spasmodic dysphonia.
        Eur J Neurol. 2014; 21: 349-352https://doi.org/10.1111/ene.12151
        • Kiyuna A
        • Maeda H
        • Higa A
        • et al.
        Brain activity related to phonation in young patients with adductor spasmodic dysphonia.
        Auris Nasus Larynx. 2014; 41: 278-284https://doi.org/10.1016/j.anl.2013.10.017
        • Samargia S
        • Schmidt R
        • Kimberley TJ.
        Shortened cortical silent period in adductor spasmodic dysphonia: evidence for widespread cortical excitability.
        Neurosci Lett. 2014; 560: 12-15https://doi.org/10.1016/j.neulet.2013.12.007
        • Khosravani S
        • Mahnan A
        • Yeh IL
        • et al.
        Atypical somatosensory-motor cortical response during vowel vocalization in spasmodic dysphonia.
        Clin Neurophysiol. 2019; 130: 1033-1040https://doi.org/10.1016/j.clinph.2019.03.003
        • Ludlow CL
        • Adler CH
        • Berke GS
        • et al.
        Research priorities in spasmodic dysphonia.
        Otolaryngol Neck Surg. 2008; 139: 495-505https://doi.org/10.1016/j.otohns.2008.05.624
        • Mor N
        • Simonyan K
        • Blitzer A.
        Central voice production and pathophysiology of spasmodic dysphonia.
        Laryngoscope. 2018; 128: 177-183https://doi.org/10.1002/lary.26655
        • Hintze JM
        • Ludlow CL
        • Bansberg SF
        • et al.
        Spasmodic dysphonia: a review. Part 1: pathogenic factors.
        Otolaryngol Head Neck Surg (United States). 2017; 157: 551-557https://doi.org/10.1177/0194599817728521
        • Ambalavanar R
        • Tanaka Y
        • Selbie WS
        • et al.
        neuronal activation in the medulla oblongata during selective elicitation of the laryngeal adductor response.
        J Neurophysiol. 2004; 95: 2920-2932
        • Ludlow CL
        • Van Pelt F
        • Koda J.
        Characteristics of late responses to superior laryngeal nerve stimulation in humans.
        Ann Otol Rhinol Laryngol. 1992; 101: 127-134https://doi.org/10.1177/000348949210100204
        • Aviv JE
        • Martin JH
        • Kim T
        • et al.
        Laryngopharyngeal sensory discrimination testing and the laryngeal adductor reflex.
        Ann Otol Rhinol Laryngol. 1999; 108: 725-730https://doi.org/10.1177/000348949910800802
        • Domer AS
        • Kuhn MA
        • Belafsky PC.
        Neurophysiology and clinical implications of the laryngeal adductor reflex.
        Curr Otorhinolaryngol Rep. 2013; 1: 178-182https://doi.org/10.1007/s40136-013-0018-5
        • Vertigan AE
        • Bone SL
        • Gibson PG.
        Laryngeal sensory dysfunction in laryngeal hypersensitivity syndrome.
        Respirology. 2013; 18: 948-956https://doi.org/10.1111/resp.12103
        • Depietro JD
        • Jang M
        • Sjogren E V
        • et al.
        Management of chronic laryngopharyngeal neuropathy in the United States and Europe.
        Ann Otol Rhinol Laryngol. 2015; 124: 305-311https://doi.org/10.1177/0003489414556080
        • Hull JH
        • Backer V
        • Gibson PG
        • et al.
        Laryngeal dysfunction: assessment and management for the clinician.
        Am J Respir Crit Care Med. 2016; 194: 1062-1072https://doi.org/10.1164/rccm.201606-1249CI
        • Vertigan AE
        • Gibson PG
        • Theodoros DG
        • et al.
        A review of voice and upper airway function in chronic cough and paradoxical vocal cord movement.
        Curr Opin Allergy Clin Immunol. 2007; 7: 37-42https://doi.org/10.1097/ACI.0b013e328012c587
        • Morrison M
        • Rammage L.
        The irritable larynx syndrome as a central sensitivity syndrome.
        Can J Speech Language Pathol Audiol. 2010; 34: 282-289
        • Ando A
        • Smallwood D
        • McMahon M
        • et al.
        Neural correlates of cough hypersensitivity in humans: evidence for central sensitisation and dysfunctional inhibitory control.
        Thorax. 2016; 71: 323-329https://doi.org/10.1136/thoraxjnl-2015-207425
        • Vertigan AE
        • Kapela SM
        • Kearney EK
        • et al.
        laryngeal dysfunction in cough hypersensitivity syndrome: a cross-sectional observational study.
        J Allergy Clin Immunol Pract. 2018; 6: 2087-2095https://doi.org/10.1016/j.jaip.2018.04.015
        • Vertigan AE
        • Bone SL
        • Gibson PG.
        Development and validation of the Newcastle laryngeal hypersensitivity questionnaire.
        Cough. 2014; 10https://doi.org/10.1186/1745-9974-10-1
        • Famokunwa B
        • Walsted ES
        • Hull JH.
        Assessing laryngeal function and hypersensitivity.
        Pulm Pharmacol Ther. 2019; 56: 108-115https://doi.org/10.1016/j.pupt.2019.04.003
        • Newman K
        • Dubester S.
        Vocal cord dysfunction: masquerader of asthma.
        Semin Respir Crit Care Med. 1994; 15: 161-167https://doi.org/10.1055/s-2007-1006358
        • Low K
        • Lau KK
        • Holmes P
        • et al.
        Abnormal vocal cord function in difficult-to-treat asthma.
        Am J Respir Crit Care Med. 2011; 184: 50-56https://doi.org/10.1164/rccm.201010-1604OC
        • Blitzer A
        • Brin MF
        • Stewart C
        • et al.
        Abductor laryngeal dystonia: a series treated with botulinum toxin.
        Laryngoscope. 1992; 102: 163-167https://doi.org/10.1288/00005537-199202000-00011
        • Cyrus CB
        • Bielamowicz S
        • Evans FJ
        • et al.
        Adductor muscle activity abnormalities in abductor spasmodic dysphonia.
        Otolaryngol Head Neck Surg. 2001; 124: 23-30https://doi.org/10.1067/mhn.2001.112572
        • Battistella G
        • Fuertinger S
        • Fleysher L
        • et al.
        Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia.
        Eur J Neurol. 2016; 23: 1517-1527https://doi.org/10.1111/ene.13067
        • Cannito MP
        • Johnson JP.
        Spastic dysphonia: a continuum disorder.
        J Commun Disord. 1981; 14: 215-223https://doi.org/10.1016/0021-9924(81)90037-X
        • Guiry S
        • Worthley A
        • Simonyan K.
        A separation of innate and learned vocal behaviors defines the symptomatology of spasmodic dysphonia.
        Laryngoscope. 2019; 129: 1627-1633https://doi.org/10.1002/lary.27617
        • Blitzer A
        • Brin MF
        • Simonyan K
        • et al.
        Phenomenology, genetics, and CNS network abnormalities in laryngeal dystonia: a 30-year experience.
        Laryngoscope. 2018; 128: S1-S9https://doi.org/10.1002/lary.27003
        • Ali SO
        • Thomassen M
        • Schulz GM
        • et al.
        Alterations in CNS activity induced by botulinum toxin treatment in spasmodic dysphonia: an H 215O PET study.
        J Speech, Lang Hear Res. 2006; 49: 1127-1146https://doi.org/10.1044/1092-4388(2006/081
        • Woodson G
        • Hochstetler H
        • Murry T.
        Botulinum toxin therapy for abductor spasmodic dysphonia.
        J Voice. 2006; 20: 137-143https://doi.org/10.1016/j.jvoice.2005.03.008
        • Bielamowicz S
        • Ludlow CL.
        Effects of botulinum toxin on pathophysiology in spasmodic dysphonia.
        Ann Otol Rhinol Laryngol. 2000; 109: 194-203https://doi.org/10.1177/000348940010900215
        • Jankovic J
        • Brin MF.
        therapeutic uses of botulinum toxin.
        N Engl J Med. 1991; 324: 1186-1194https://doi.org/10.1056/NEJM199104253241707
        • Ranoux D
        • Attal N
        • Morain F
        • et al.
        Botulinum toxin type a induces direct analgesic effects in chronic neuropathic pain.
        Ann Neurol. 2008; 64: 274-283https://doi.org/10.1002/ana.21427
        • Gilbert MR
        • Young VVN
        • Smith LJ
        • et al.
        Multidose botulinum toxin a for intralaryngeal injection: a cost analysis.
        J Voice. 2019; 33: 159-161https://doi.org/10.1016/j.jvoice.2017.11.004
        • Amin MR
        • Koufman JA.
        Vagal neuropathy after upper respiratory infection: a viral etiology?.
        Am J Otolaryngol Head Neck Med Surg. 2001; 22: 251-256https://doi.org/10.1053/ajot.2001.24823
        • Pratter MR.
        Cough and the Common Cold.
        Chest. 2006; 129: 72S-74Shttps://doi.org/10.1378/chest.129.1_suppl.72S
        • Roy N.
        Functional dysphonia.
        Curr Opin Otolaryngol Head Neck Surg. 2003; 11: 144-148https://doi.org/10.1097/00020840-200306000-00002
        • Hintze JM
        • Ludlow CL
        • Bansberg SF
        • et al.
        Spasmodic dysphonia: a review. Part 2: characterization of pathophysiology.
        Otolaryngol Head Neck Surg (United States). 2017; 157: 558-564https://doi.org/10.1177/0194599817728465
        • Roy N
        • Mauszycki SC
        • Merrill RM
        • et al.
        Toward improved differential diagnosis of adductor spasmodic dysphonia and muscle tension dysphonia.
        Folia Phoniatr Logop. 2007; 59: 83-90https://doi.org/10.1159/000098341
        • Murry T.
        Spasmodic dysphonia: Let's look at that again.
        J Voice. 2014; 28: 694-699https://doi.org/10.1016/j.jvoice.2014.03.007
        • Rojas GVE
        • Ricz H
        • Tumas V
        • et al.
        vocal parameters and self-perception in individuals with adductor spasmodic dysphonia.
        J Voice. 2017; 31: 391.e7-391.e18https://doi.org/10.1016/j.jvoice.2016.09.029
        • Khosravani S
        • Mahnan A
        • Yeh IL
        • et al.
        Laryngeal vibration as a non-invasive neuromodulation therapy for spasmodic dysphonia.
        Sci Rep. 2019; 9: 1-11https://doi.org/10.1038/s41598-019-54396-4
        • Bianconiz R
        • Van Der Meulen JP.
        The response to vibration of the end organs of mammalian muscle spindles.
        J Neurophysiol. 1963; 26: 177-190https://doi.org/10.1152/jn.1963.26.1.177
        • Brown MC
        • Enberg I
        • Matthews PB.
        The use of vibration as a selective repetitive stimulus for Ia afferent fibres.
        J Physiol. 1967; 191 (Available at:): 31P-32P