Summary
Objective/Hypothesis
This study aimed to determine objective production differences relative to two emotional
interpretations in performing an excerpt from a classical art song. The null hypothesis
was proposed.
Methods
The first author recorded an excerpt from an art song. The excerpt was sung with two
contrasting musical interpretations: an “empathetic legato” approach, and a “sarcastic”
approach characterized by emphatic attacks. Microphone, airflow, and electroglottography
signals were digitized. The vowels were analyzed in terms of intensity, long term
average spectra, fundamental frequency (fo), airflow vibrato rate and extent, vowel onset slope, intensity comparison of harmonic
frequencies, and glottal measures based on electroglottograph waveforms. Four consonant
tokens were analyzed relative to airflow, voice onset time, and production duration.
Results & Conclusions
The emphatic performance had faster vowel onset, increased glottal adduction, increased
intensity of harmonics in 2-3 kHz, increased intensity in the fourth and fifth formants,
inferred subglottal pressure increase, increased airflow for /f/, and greater aspiration
airflow for /p, t/. Vibrato extents for intensity, fo, and airflow were wider in the emphatic approach. Findings revealed larger EGGW25
and peak-to-peak amplitude values of the electroglottography waveform, suggesting
greater vocal fold contact area and longer glottal closure for the emphatic approach.
Long-term average spectrum analyses of the entire production displayed minor variation
across all formant frequencies, suggesting an insignificant change in vocal tract
shaping between the two approaches. This single-case objective study emphasizes the
reality of physiological, aerodynamic, and acoustic production differences in the
interpretive and pedagogical aspects of art song performance.
Key Words
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of VoiceAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
REFERENCES
- The Expression of the Emotions in Man and Animals.John Murray, London, England1872
- Measurement on the expression of emotion in music.Proc. Natl Acad. Sci. 1823; 9: 323-325
- Sounds of emotion: Production and perception of affect-related vocal acoustics.Ann. N. Y. Acad. of Sci. 2003; 1000: 244-265https://doi.org/10.1196/annals.1280.012
- Vocal communications of emotion: A review of research paradigms.Speech Communication. 2003; 40: 227-256https://doi.org/10.1016/S0167-6393(02)00084-5
- Expression of emotion in voice and music.J. Voice. 1995; 9: 235-248https://doi.org/10.1016/S0892-1997(05)080231-0
- The expression of emotion in the singing voice: acoustic patterns in vocal performance.J. Acoust. Soc. Am. 2017; 142: 1805-1815https://doi.org/10.1121/1.5002886
- The Emotional Power of Music: Multidisciplinary Perspectives on Musical Arousal, Expression, and Social Control.Oxford University Press, Oxford, United Kingdom2013
- Analyzing emotion expression in singing via flow glottograms, long-term-average spectra, and expert listener evaluation.J. Voice. 2019; (in press)https://doi.org/10.1016/j.voice.2019.08.007
- The effects of emotional expression on vibrato.J. Voice. 2015; 29: 170-181https://doi.org/10.1016/j.voice/2014.06.007
- Comparing contemporary commercial and classical styles: Emotion expression in singing.J. Voice. 2019; (in press)https://doi.org/10.1016/j.voice.2019.10.002
- Comparing the acoustic expression of emotion in speaking and the singing voice.Computer Speech and Language. 2015; 29: 218-235https://doi.org/10.1016/j.csl.2013.10.002
- Electroglottography and direct measurement of vocal fold contact area.in: Fujimura O Vocal Fold Physiology, Vol. 2. Raven Press, New York1988: 279-291
- Relationship between the electroglottographic signal and vocal fold contact area.Journal of Voice. 2016; 30 (In this issue): 161-171https://doi.org/10.1016/j.jvoice.2015.03.018
- Acoustic and psychoacoustic aspects of vocal vibrato.STL-QPSR. 1995; 35: 045-068
- Airflow vibrato: Dependence on pitch and loudness.J. Voice. 2019; 33: 815-830https://doi.org/10.1016/j.voice.2018.05.007
- Examination of the laryngeal adduction measure EGGW.in: Bell-Berti F Lawrence RJ Producing Speech: Contemporary Issues: for Katherine Safford Harris. American Institute of Physics, Woodbury, New York1995: 269-290
- Control methods used in a study of vowels.J. Acoust. Soc. Am. 1952; 24: 175-184https://doi.org/10.1121/1.1906875
- Development of speech sounds in children.Acta Otolaryngol. 1969; 257 (Uppsala, Sweden: Almquist & Wiksells)
- Acoustic characteristics of American English vowels.J. Acoust. Soc. Am. 1995; 97: 3099-3111https://doi.org/10.1121/1.411872
- Glottal inverse filtering analysis of human voice production — A review of estimation and parameterization methods of the glottal excitation and their applications.Sādhanā. 2011; 36: 623-650https://doi.org/10.1007/s12046-011-0041-5
- Vibrato in singing voice: The link between source-filter and sinusoidal models.EURASIP Journal on Applied Signal Processing. 2004; 7: 1007-1020https://doi.org/10.1155/S1110865704401127
- Inverse filtering in singing voice: a critical analysis.IEEE Transactions on Audio Speech Language Processing. 2006; 14 (b): 1422-1431
- Standardization of pitch range settings in voice acoustic analysis.Behavior Research Methods. 2009; 41: 318-324https://doi.org/10.3758/BRM.41.2.318
- Principles of Voice Production.Prentice-Hall, Upper Saddle River, New Jersey1994
Article info
Publication history
Published online: February 12, 2021
Accepted:
December 21,
2020
Identification
Copyright
© 2021 The Voice Foundation. Published by Elsevier Inc. All rights reserved.