Advertisement
Research Article| Volume 37, ISSUE 3, P322-331, May 2023

Download started.

Ok

Voice Disorders Detection Through Multiband Cepstral Features of Sustained Vowel

      Summary

      This study aims to detect voice disorders related to vocal fold nodule, Reinke’s edema and neurological pathologies through multiband cepstral features of the sustained vowel /a/. Detection is performed between pairs of study groups and multiband analysis is accomplished using the wavelet transform. For each pair of groups, a parameters selection is carried out. Time series of the selected parameters are used as input for four classifiers with leave-one-out cross validation. Classification accuracies of 100% are achieved for all pairs including the control group, surpassing the state-of-art methods based on cepstral features, while accuracies higher than 88.50% are obtained for the pathological pairs. The results indicated that the method may be adequate to assist in the diagnosis of the voice disorders addressed. The results must be updated in the future with a larger population to ensure generalization.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Voice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Krischke S.
        • Weigelt S.
        • Hoppe U.
        • et al.
        Quality of life in dysphonic patients.
        J Voice. 2005; 19: 132-137https://doi.org/10.1016/j.jvoice.2004.01.007
        • Martins R.H.G.
        • do Amaral H.A.
        • Tavares E.L.M.
        • et al.
        Voice disorders: etiology and diagnosis.
        J Voice. 2016; 30: 761.e1-761.e9https://doi.org/10.1016/j.jvoice.2015.09.017
        • Colton R.
        Understanding Voice Problems : A Physiological Perspective for Diagnosis and Treatment.
        Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia2011
        • Aronson A.
        • Bless D.
        Clinical Voice Disorders.
        4th edition. Thieme, New York2009
        • Bodt M.D.
        • Ketelslagers K.
        • Peeters T.
        • et al.
        Evolution of vocal fold nodules from childhood to adolescence.
        J Voice. 2007; 21: 151-156https://doi.org/10.1016/j.jvoice.2005.11.006
        • Aronsson C.
        • Bohman M.
        • Ternström S.
        • et al.
        Loud voice during environmental noise exposure in patients with vocal nodules.
        Logopedics Phoniatrics Vocol. 2007; 32: 60-70https://doi.org/10.1080/14015430601002408
        • Tavaluc R.
        • Tan-Geller M.
        Reinke’S edema.
        Otolaryngol Clin North Am. 2019; 52: 627-635https://doi.org/10.1016/j.otc.2019.03.006
        • Koszewski I.J.
        • Hoffman M.R.
        • Young W.G.
        • et al.
        Office-based photoangiolytic laser treatment of reinke’s edema.
        Otolaryngol–Head Neck Surg. 2015; 152: 1075-1081https://doi.org/10.1177/0194599815577104
        • Griffiths C.
        • Bough I.D.
        Neurologic diseases and their effect on voice.
        J Voice. 1989; 3: 148-156https://doi.org/10.1016/s0892-1997(89)80141-9
      1. Wehrwein E.A., Orer H.S., Barman S.M. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. American Cancer Society; 1239–1278. doi:10.1002/cphy.c150037.

        • Kendall K.
        Laryngeal Evaluation: Indirect Laryngoscopy to High-speed Digital Imaging.
        Thieme, New York2010
        • Castellana A.
        • Carullo A.
        • Corbellini S.
        • et al.
        Discriminating pathological voice from healthy voice using cepstral peak prominence smoothed distribution in sustained vowel.
        IEEE Trans Instrum Measur. 2018; 67: 646-654https://doi.org/10.1109/TIM.2017.2781958
        • Parsa V.
        • Jamieson D.G.
        Acoustic discrimination of pathological voice.
        J Speech Lang Hearing Res. 2001; 44: 327-339https://doi.org/10.1044/1092-4388(2001/027)
        • Bielamowicz S.
        • Kreiman J.
        • Gerratt B.R.
        • et al.
        Comparison of voice analysis systems for perturbation measurement.
        J Speech Lang Hearing Res. 1996; 39https://doi.org/10.1044/jshr.3901.126
      2. 126–124
        • Zhang Y.
        • Jiang J.J.
        Acoustic analyses of sustained and running voices from patients with laryngeal pathologies.
        J Voice. 2008; 22: 1-9https://doi.org/10.1016/j.jvoice.2006.08.003
        • Delgado-Vargas B.
        • Acle-Cervera L.
        • Sánz-López L.
        • et al.
        Cepstral analysis in patients with a vocal fold motility impairment: advantages of the cepstrum over time-based acoustic analysis.
        Eur Arch Otorhinolaryngol. 2020; https://doi.org/10.1007/s00405-020-06291-2
        • Lowell S.Y.
        • Colton R.H.
        • Kelley R.T.
        • et al.
        Spectral- and cepstral-based measures during continuous speech: capacity to distinguish dysphonia and consistency within a speaker.
        J Voice. 2011; 25: 223-232https://doi.org/10.1016/j.jvoice.2010.06.007
        • Lowell S.Y.
        • Colton R.H.
        • Kelley R.T.
        • et al.
        Predictive value and discriminant capacity of cepstral- and spectral-based measures during continuous speech.
        J Voice. 2013; 27: 393-400https://doi.org/10.1016/j.jvoice.2013.02.005
        • Benba A.
        • Jilbab A.
        • Hammouch A.
        Analysis of multiple types of voice recordings in cepstral domain using MFCC for discriminating between patients with parkinson’s disease and healthy people.
        Int J Speech Technol. 2016; 19: 449-456https://doi.org/10.1007/s10772-016-9338-4
        • Godino-Llorente J.I.
        • Gómez-Vilda P.
        Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors.
        IEEE Trans Biomed Eng. 2004; 51: 380-384https://doi.org/10.1109/TBME.2003.820386
      3. Doha, Qatar
        • Fang S.-H.
        • Tsao Y.
        • Hsiao M.-J.
        • et al.
        Detection of pathological voice using cepstrum vectors: a deep learning approach.
        J Voice. 2019; 33: 634-641https://doi.org/10.1016/j.jvoice.2018.02.003
        • Godino-Llorente J.I.
        • Gómez-Vilda P.
        • Blanco-Velasco M.
        Dimensionality reduction of a pathological voice quality assessment system based on gaussian mixture models and short-term cepstral parameters.
        IEEE Trans Biomed Eng. 2006; 53: 1943-1953https://doi.org/10.1109/TBME.2006.871883
        • Rani K U.
        • Holi M.S.
        GMM Classifier for identification of neurological disordered voices using MFCC features.
        IOSR J VLSI Signal Process. 2015; 5: 44-51https://doi.org/10.9790/4200-05214451
      4. Uberlândia, Brazil
        • Arias-Londoño J.D.
        • Godino-Llorente J.I.
        • Sáenz-Lechón N.
        • et al.
        Automatic detection of pathological voices using complexity measures, noise parameters, and mel-cepstral coefficients.
        IEEE Trans Biomed Eng. 2010; 58: 370-379https://doi.org/10.1109/TBME.2010.2089052
        • Benba A.
        • Jilbab A.
        • Hammouch A.
        Discriminating between patients with parkinson’s and neurological diseases using cepstral analysis.
        IEEE Trans Neural Syst Rehabil Eng. 2016; 24: 1100-1108https://doi.org/10.1109/TNSRE.2016.2533582
        • Cordeiro H.
        • Fonseca J.
        • Guimarães I.
        • et al.
        Hierarchical classification and system combination for automatically identifying physiological and neuromuscular laryngeal pathologies.
        J Voice. 2017; 31: 384.e9-384.e14https://doi.org/10.1016/j.jvoice.2016.09.003
        • Hemmerling D.
        • Skalski A.
        • Gajda J.
        Voice data mining for laryngeal pathology assessment.
        Comput Biol Med. 2016; 69: 270-276https://doi.org/10.1016/j.compbiomed.2015.07.026
        • Orozco-Arroyave J.R.
        • Belalcazar-Bolanos E.A.
        • Arias-Londono J.D.
        • et al.
        Characterization methods for the detection of multiple voice disorders: neurological, functional, and laryngeal diseases.
        IEEE J Biomed Health Inform. 2015; 19: 1820-1828https://doi.org/10.1109/jbhi.2015.2467375
      5. Poznan, Poland
        • Rani K U.
        • Holi M.S.
        Wavelet transform features to hybrid classifier for detection of neurological-disordered voices.
        J Clin Eng. 2017; 42: 89-98https://doi.org/10.1097/jce.0000000000000210
      6. Mysore, India
      7. Rome, Italy
        • Kumar B.R.
        • Bhat J.S.
        • Prasad N.
        Cepstral analysis of voice in persons with vocal nodules.
        J Voice. 2010; 24: 651-653https://doi.org/10.1016/j.jvoice.2009.07.008
      8. Petrópolis, Brazil
        • Hegde S.
        • Shetty S.
        • Rai S.
        • et al.
        A survey on machine learning approaches for automatic detection of voice disorders.
        J Voice. 2019; 33: 947.E11-947.E33https://doi.org/10.1016/j.jvoice.2018.07.014
        • Coleman R.F.
        Sources of variation in phonetograms.
        J Voice. 1993; 7: 1-14https://doi.org/10.1016/S0892-1997(05)80107-9
        • Vetterli M.
        • Kovačević J.
        Wavelets and Subband Coding.
        Prentice Hall, Englewood Cliffs, New Jersey1995
        • Malvar H.S.
        Signal Processing with Lapped Transforms.
        Artech House, Norwood, Massachusetts1992
        • Rioul O.
        • Vetterli M.
        Wavelets and signal processing.
        IEEE Signal Process Mag. 1991; 8: 14-38https://doi.org/10.1109/79.91217
        • Deller Jr. J.R.
        • Hansen J.H.L.
        • Proakis J.G.
        Discrete-Time Processing of Speech Signals.
        IEEE Press, Piscataway, New Jersey2000
        • Rabiner L.R.
        • Schafer R.W.
        Digital Processing of Speech Signals.
        Prentice-Hall, Englewood Cliffs, New Jersey1979
        • Tribolet J.M.
        Seismic Applications of Homomorphic Signal Processing.
        Prentice Hall, Englewood Cliffs, New Jersey1979
        • Gray A.
        • Markel J.
        Distance measures for speech processing.
        IEEE Trans Acoust. 1976; 24: 380-391https://doi.org/10.1109/tassp.1976.1162849
        • Rodrigues P.M.
        • Freitas D.
        • Teixeira J.P.
        • et al.
        Electroencephalogram hybrid method for alzheimer early detection.
        Procedia Comput Sci. 2018; 138: 209-214https://doi.org/10.1016/j.procs.2018.10.030
        • Tohkura Y.
        A weighted cepstral distance measure for speech recognition.
        IEEE Trans Acoust. 1987; 35: 1414-1422https://doi.org/10.1109/tassp.1987.1165058
        • Paliwal K.
        On the performance of the quefrency-weighted cepstral coefficients in vowel recognition.
        Speech Commun. 1982; 1: 151-154https://doi.org/10.1016/0167-6393(82)90034-6
        • Nakas C.T.
        • Yiannoutsos C.T.
        Ordered multiple-class ROC analysis with continuous measurements.
        Stat Med. 2004; 23: 3437-3449https://doi.org/10.1002/sim.1917
        • Fawcett T.
        An introduction to roc analysis.
        Pattern Recognit Lett. 2006; 27: 861-874https://doi.org/10.1016/j.patrec.2005.10.010
        • Kruskal W.H.
        • Wallis W.A.
        Use of ranks in one-criterion variance analysis.
        J Am Stat Assoc. 1952; 47: 583-621https://doi.org/10.1080/01621459.1952.10483441
        • Haykin S.
        Neural Networks and Learning Machines.
        3rd. Pearson Education, Upper Saddle River, New Jersey2009
        • Trappenberg T.
        Fundamentals of Machine Learning.
        Oxford University Press, 2020
        • Hantzakos A.
        • Remacle M.
        • Dikkers, F.G.
        • et al.
        Exudative lesions of reinke’s space: a terminology proposal.
        Eur Arch Oto-Rhino-Laryngol. 2008; 266: 869-878https://doi.org/10.1007/s00405-008-0863-x
        • Hillman R.E.
        • Holmberg E.B.
        • Perkell J.S.
        • et al.
        Phonatory function associated with hyperfunctionally related vocal fold lesions.
        J Voice. 1990; 4: 52-63https://doi.org/10.1016/S0892-1997(05)80082-7
        • Altman K.W.
        Vocal fold masses.
        Otolaryngol Clin North Am. 2007; 40: 1091-1108https://doi.org/10.1016/j.otc.2007.05.011