Advertisement
Review Article| Volume 37, ISSUE 3, P305-313, May 2023

Download started.

Ok

Integrative Insights into the Myoelastic-Aerodynamic Theory and Acoustics of Phonation. Scientific Tribute to Donald G. Miller

      Summary

      In this tribute article to D.G. Miller, we review some historical and recent contributions to understanding the myoelastic-aerodynamic (MEAD) theory of phonation and the related acoustic phenomena in subglottal and vocal tract. At the time of the formulation of MEAD by van den Berg in late 1950s, it was assumed that vocal fold oscillations are self-sustained thanks to increased subglottal pressure pushing the glottis to open and decreased subglottal pressure allowing the glottis to close. In vivo measurements of subglottal pressures during phonation invalidated these assumptions, however, and showed that at low fundamental frequencies subglottal pressure rather tends to reach a maximum value at the beginning of glottal closure and then exhibits damped oscillations. These events can be interpreted as transient acoustic resonance phenomena in the subglottal tract that are triggered by glottal closure. They are analogous to the transient acoustic phenomena seen in the vocal tract. Rather than subglottal pressure oscillations, a more efficient mechanism of transfer of aerodynamic energy to the vocal fold vibrations has been identified in the vertical phase differences (mucosal waves) making the glottal shape more convergent during glottis opening than during glottis closing. Along with other discoveries, these findings form the basis of our current understanding of MEAD.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Voice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Berg van den J.
        Myoelastic-aerodynamic theory of voice production.
        J Speech Hear Res. 1958; 3: 227-244
      1. Cooper DS. Research in laryngeal physiology with excised larynges. In: Cummings CW, Fredrickson JM, Harker LA, Schuller DE, Krause CJ, eds. Otolaryngology - Head and Neck Surgery. Vol 3. 2 ed. St. Louis and Toronto: C. V. Mosby; 1986:1728-1737.

        • Schutte HK
        Historical approaches in revealing the singing voice, Part 1.
        in: Welch G Howard DM Nix J Oxford Handbook of Singing. Oxford University Press, Oxford, UK2019: 965-990
        • Titze IR.
        Comments on the myoelastic - aerodynamic theory of phonation.
        J Speech Hear Res. 1980; 23: 495-510
        • Titze IR.
        The Myoelastic Aerodynamic Theory of Phonation.
        National Center for Voice and Speech, Denver COIowa City IA2006
        • Elemans CPH
        • Rasmussen JH
        • Herbst CT
        • et al.
        Universal mechanisms of sound production and control in birds and mammals.
        Nat Commun. 2015; 6: 1-13
        • Herbst CT.
        Biophysics of vocal production in mammals.
        in: Suthers RA Fitch WT Fay RR Popper AN Vertebrate Sound Production and Acoustic Communication. 1 ed. Springer International Publishing Switzerland, 2016: 159-189
        • Titze IR.
        Principles of Voice Production (second printing).
        National Center for Voice and Speech, Iowa City, IA2000
        • Verdolini K
        • Titze IR.
        The application of laboratory formulas to clinical voice management.
        Natl Center Voice Speech Status Progr Rep. 1994; 7: 197-205
        • Berg van den J
        • Zantema JT
        • Doornebal Jr, P
        On the air resistance and the Bernoulli effect of the human larynx.
        J Acoust Soc Am. 1957; 29: 626-631
        • Miller DG
        • Schutte HK.
        Characteristic patterns of sub- and supraglottal pressure variations within the glottal cycle.
        in: Van Lawrence L Transcripts of the XIIIth Symposium: Care of the Professional Voice, New York, 1984. The Voice Foundation, New York, NY1985: 70-75
        • Schutte HK
        • Miller DG.
        The effect of F0/F1 coincidence in soprano high notes on pressure at the glottis.
        J Phonetics. 1986; 14: 385-392
        • Schutte HK
        • Miller DG.
        Resonanzspiele der Gesangsstimme in ihren Beziehungen zu supra- und subglottalen Druckverläufen: Konsequenzen für die Stimmbildungstheorie. [Play of resonances in the singing voice in the supra- and subglottal pressure changes: consequences for the theory of voice production].
        Folia Phoniatr (Basel). 1988; 40: 65-73
        • Miller DG
        • Schutte HK.
        Formant tuning in a proffesional baritone.
        J Voice. 1990; 4: 231-237
        • Miller DG
        • Schutte HK.
        Effects of downstream occlusions on pressures near the glottis in singing.
        in: Gauffin J Hammarberg B Vocal Fold Physiology: Acoustic, Perceptual, and Physiological Aspects of Voice Mechanisms. Singular Publishing Group, San Diego, California1991: 91-98
        • Cranen B
        • Boves L.
        A set-up for testing the validity of the two mass model of the vocal folds.
        in: Titze IR Scherer RC Vocal Fold Physiology: Biomechanics, Acoustics and Phonatory Control. The Denver Center for the Performing Arts, Denver, CO1983: 500-513
        • Cranen B
        • Boves L.
        Pressure measurements during speech production using semicondductor miniature pressure transducers - impact on models for speech production.
        J Acoust Soc Am. 1985; 77: 1543-1551
        • Herbst CT
        • Lohscheller J
        • Svec JG
        • et al.
        Glottal opening and closing events investigated by electroglottography and super-high-speed video recordings.
        J Exp Biol. 2014; 217: 955-963
        • Fant G.
        Glottal source and excitation analysis.
        STL-QPSR. 1979; (1/1979): 85-107
        • Chen CJ
        • Miller DG.
        Pitch-synchronous analysis of human voice.
        J Voice. 2019; 34: 494-502
        • Cranen B
        • Boves L.
        On subglottal formant analysis.
        J Acoust Soc Am. 1987; 81: 734-746
        • Arsikere H
        • Leung GK
        • Lulich SM
        • et al.
        Automatic estimation of the first three subglottal resonances from adults speech signals with application to speaker height estimation.
        Speech Commun. 2013; 55: 51-70
        • Sundberg J
        • Scherer R
        • Hess M
        • et al.
        Subglottal pressure oscillations accompanying phonation.
        J Voice. 2013; 27: 411-421
        • Peterson GE
        • Barney HL.
        Control methods used in study of the vowels.
        J Acoust Soc Am. 1952; 24: 175-184
        • Childers DG
        • Wu K.
        Gender recognition from speech. Part II: fine analysis.
        J Acoust Soc Am. 1991; 90: 1841-1856
        • Koopmans-van Beinum FJ.
        What's in a schwa?.
        Phonetica. 1994; 51: 68-79
      2. Flemming E. The phonetics of schwa vowels. MIT. Available at:http://web.mit.edu/flemming/www/paper/schwaphonetics.pdf. Accessed December 14, 2020.

        • Titze IR.
        The physics of small-amplitude oscillation of the vocal folds.
        J Acoust Soc Am. 1988; 83: 1536-1552
        • Chen CJ.
        Elements of Human Voice.
        World Scientific, New Jersey2016
        • Rothenberg M.
        Acoustic interaction between the glottal source and the vocal tract.
        in: Stevens KN Hirano M Vocal Fold Physiology. University of Tokyo Press, Tokyo1981: 305-328
        • Fant GM.
        Acoustic Theory of Speech Production.
        Mouton, The Hague, NL1960
        • Ho JC
        • Zanartu M
        • Wodicka GR.
        An anatomically based, time-domain acoustic model of the subglottal system for speech production.
        J Acoust Soc Am. 2011; 129: 1531-1547
        • Flanagan JL
        • Landgraf LL.
        Self oscillating source for vocal tract synthesizers.
        IEEE Trans Audio Electroacoust. 1968; AU-16: 57-64
        • Ishizaka K
        • Flanagan JL.
        Synthesis of voiced sounds from a two-mass model of the vocal cords.
        Bell Syst Tech J. 1972; 51: 1233-1268
        • Ishizaka K.
        Air resistance and intraglottal pressure in a model of the larynx.
        in: Titze IR Scherer RC Vocal Fold Physiology: Biomechanics, Acoustics and Phonatory Control. The Denver Center for the Performing Arts, Denver, CO1983: 414-424
        • Li S
        • Scherer RC
        • Wan MX
        • et al.
        The effect of glottal angle on intraglottal pressure.
        J Acoust Soc Am. 2006; 119: 539-548
        • Decker GZ
        • Thomson SL.
        Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
        J Voice. 2007; 21: 273-284
        • Khosla S
        • Oren L
        • Ying J
        • et al.
        Direct simultaneous measurement of intraglottal geometry and velocity fields in excised larynges.
        Laryngoscope. 2014; 124: S1-S13
        • Oren L
        • Khosla S
        • Gutmark E.
        Intraglottal pressure distribution computed from empirical velocity data in canine larynx.
        J Biomech. 2014; 47: 1287-1293
        • Alipour F
        • Scherer RC.
        Time-dependent pressure and flow behavior of a self-oscillating laryngeal model with ventricular folds.
        J Voice. 2015; 29: 649-659
        • Sidlof P
        • Zörner S
        • Hüppe A.
        A hybrid approach to the computational aeroacoustics of human voice production.
        Biomech Model Mechanobiol. 2015; 14: 473-488
        • DeJonckere PH
        • Lebacq J.
        In vivo quantification of the intraglottal pressure: modal phonation and voice onset.
        J Voice. 2020; 34: 645.e619-645.e639
        • Story BH.
        Mechanisms of voice production.
        in: Redford MA The Handbook of Speech Production. edition: 1. Wiley-Blackwell, 2015: 34-58
        • Rothenberg M
        • Zahorian S.
        Nonlinear inverse filtering technique for estimating glottal-area waveform.
        J Acoust Soc Am. 1977; 61: 1063-1071
        • Titze IR.
        Nonlinear source-filter coupling in phonation: theory.
        J Acoust Soc Am. 2008; 123: 2733-2749
        • Granqvist S
        • Hertegard S
        • Larsson H
        • et al.
        Simultaneous analysis of vocal fold vibration and transglottal airflow: exploring a new experimental setup.
        J Voice. 2003; 17: 319-330
        • Titze IR.
        Source-filter interaction in speaking and singing is nonlinear.
        Echoes Newslett Acoust Soc Am. 2007; 17: 1-3
        • Hiroto I.
        Vibration of Vocal Cords: an Ultra High-Speed Cinematographic Study. (Film).
        Department of Otolaryngology, Kurume University, Kurume, Japan1968
        • Matsushita H.
        The vibratory mode of the vocal folds in the excised larynx.
        Folia Phoniatr (Basel). 1975; 27: 7-18
        • Berry DA
        • Montequin DW
        • Tayama N.
        High-speed digital imaging of the medial surface of the vocal folds.
        J Acoust Soc Am. 2001; 110: 2539-2547
        • Doellinger M
        • Berry DA.
        Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation.
        J Voice. 2006; 20: 401-413
        • Yumoto E
        • Kadota Y
        • Mori T.
        Vocal fold vibration viewed from the tracheal side in living human beings.
        Otolaryngol Head Neck Surg. 1996; 115: 329-334
        • Berke GS
        • Moore DM
        • Hantke DR
        • et al.
        Laryngeal modeling: theoretical, in vitro, in vivo.
        Laryngoscope. 1987; 97: 871-881
        • Hiroto I.
        The mechanism of phonation: its pathophysiological aspect.
        Nippon Jibiinkoka Gakkai Kaiho. 1966; 69 (In Japanese).: 2097-2106
        • Baer T.
        Investigation of Phonation Using Excised Larynxes. (Doctoral dissertation).
        Massachusetts Institute of Technology, Cambridge, Mass1975
        • Titze IR
        • Jiang JJ
        • Hsiao TY.
        Measurement of mucosal wave propagation and vertical phase difference in vocal fold vibration.
        Ann Otol Rhinol Laryngol. 1993; 102: 58-63
        • Musehold A.
        Stroboskopische und fotografische Studien über die Stellung der Stimmlippen im Brust- und Falsett-Register. [Stroboscopic and photographic studies about the vocal fold adjustments in chest and falsetto registers].
        Arch Lar Rhinol. 1898; 7: 1-21
        • Farnsworth DW.
        High-speed motion pictures of the human vocal cords.
        Bell Lab Record. 1940; 18: 203-208
        • Saito S
        • Fukuda H
        • Isogai Y
        • et al.
        X-ray stroboscopy.
        in: Stevens KN Hirano M Vocal Fold Physiology. University of Tokyo Press, Tokyo1981: 95-106
        • Boessenecker A
        • Berry DA
        • Lohscheller J
        • et al.
        Mucosal wave properties of a human vocal fold.
        Acta Acust United Acust. 2007; 93: 815-823
        • Kobler JB
        • Chang EW
        • Zeitels SM
        • et al.
        Dynamic imaging of vocal fold oscillation with four-dimensional optical coherence tomography.
        Laryngoscope. 2010; 120: 1354-1362
        • Kumar SP
        • Svec JG.
        Kinematic model for simulating mucosal wave phenomena on vocal folds.
        Biomed Signal Process Control. 2019; 49: 328-337
        • Svec JG
        • Sram F
        • Schutte HK.
        Videokymografie: nová vysokofrekvenční metoda vyšetřování kmitů hlasivek. [Videokymography: a new high-speed method for the examination of vocal-fold vibrations].
        Otorinolaryngol (Prague). 1999; 48: 155-162
        • Svec JG.
        On vibration Properties of Human Vocal Folds: Voice Registers, Bifurcations, Resonance Characteristics, Development and Application of Videokymography.
        University of Groningen, Groningen, the Netherlands2000 (Ph.D. thesis)
        • Thomson SL
        • Mongeau L
        • Frankel SH.
        Aerodynamic transfer of energy to the vocal folds.
        J Acoust Soc Am. 2005; 118: 1689-1700
        • Hirano M.
        Clinical Examination of Voice. 5. Springer-Verlag, Wien, Austria1981
        • Bless DM
        • Hirano M
        • Feder RJ.
        Videostroboscopic evaluation of the larynx.
        Ear Nose Throat J. 1987; 66: 289-296
        • Hirano M
        • Bless DM.
        Videostroboscopic Examination of the Larynx.
        Singular Publishing Group, San Diego, California1993
        • Titze IR
        • Palaparthi A.
        Sensitivity of source-filter interaction to specific vocal tract shapes.
        IEEE/ACM Trans Audio Speech Lang Process. 2016; 24: 2507-2515
        • Lucero JC
        • Lourenco KG
        • Hermant N
        • et al.
        Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds.
        J Acoust Soc Am. 2012; 132: 403-411
        • Titze I
        • Riede T
        • Popolo P.
        Nonlinear source-filter coupling in phonation: vocal exercises.
        J Acoust Soc Am. 2008; 123: 1902-1915
        • Uezu Y
        • Kaburagi T.
        A measurement study on voice instabilities during modal-falsetto register transition.
        Acoust Sci Technol. 2016; 37: 267-276
        • Wade L
        • Hanna N
        • Smith J
        • et al.
        The role of vocal tract and subglottal resonances in producing vocal instabilities.
        J Acoust Soc Am. 2017; 141: 1546-1559
        • Murtola T
        • Aalto A
        • Malinen J
        • et al.
        Modal locking between vocal fold oscillations and vocal tract acoustics.
        Acta Acustica United Acustica. 2018; 104: 323-327
        • Titze IR.
        A framework for the study of vocal registers.
        J Voice. 1988; 2: 183-194
        • Lehoux H
        • Hampala V
        • Svec JG.
        Subglottal pressure oscillations in anechoic and resonant conditions and their influence on excised larynx phonations.
        Sci Rep. 2021; 11: 1-14
        • Titze IR
        • Baken RJ
        • Herzel H.
        Evidence of chaos in vocal fold vibration.
        in: Titze IR Vocal Fold Physiology: Frontiers in Basic Science. Singular Publishing Group, San Diego, CA1993: 143-188
        • Sulter AM
        • Schutte HK
        • Miller DG.
        Standardized laryngeal videostroboscopic rating: differences between untrained and trained male and female subjects, and effects of varying sound intensity, fundamental frequency, and age.
        J Voice. 1996; 10: 175-189
        • Schutte HK.
        Historical approaches in revealing the singing voice, Part 2.
        in: Welch G Howard DM Nix J Oxford Handbook of Singing. Oxford University Press, Oxford, UK2019: 991-1026
        • Miller DG.
        Registers in Singing: Empirical and Systematic Studies in the Theory of the Singing Voice.
        University of Groningen, Groningen, the Netherlands2000 (Ph.D. thesis)
        • Miller DG.
        Resonance in Singing: Voice Building Through Acoustic Feedback.
        Inside View Press, Princeton, NJ2008
        • Miller DG
        • Schutte HK.
        The use of spectrum analysis in the voice studio.
        in: Nair G Voice – Tradition and Technology. A State-of-the-Art Studio. Singular Publishing Group, San Diego, CA1999: 189-210
        • Miller DG
        • Schutte HK.
        The use of the electroglottograph in the voice studio.
        in: Nair G Voice – Tradition and Technology. A State-of-the-Art Studio. Singular Publishing Group, San Diego, CA1999: 211-225