Review Article|Articles in Press

Dynamic System Coupling in Voice Production

Published:February 01, 2023DOI:


      Voice is a major means of communication for humans, non-human mammals and many other vertebrates like birds and anurans. The physical and physiological principles of voice production are described by two theories: the MyoElastic-AeroDynamic (MEAD) theory and the Source-Filter Theory (SFT). While MEAD employs a multiphysics approach to understand the motor control and dynamics of self-sustained vibration of vocal folds or analogous tissues, SFT predominantly uses acoustics to understand spectral changes of the source via linear propagation through the vocal tract. Because the two theories focus on different aspects of voice production, they are often applied distinctly in specific areas of science and engineering. Here, we argue that the MEAD and the SFT are linked integral aspects of a holistic theory of voice production, describing a dynamically coupled system. The aim of this manuscript is to provide a comprehensive review of both the MEAD and the source-filter theory with its nonlinear extension, the latter of which suggests a number of conceptual similarities to sound production in brass instruments. We discuss the application of both theories to voice production of humans as well as of animals. An appraisal of voice production in the light of non-linear dynamics supports the notion that it can be best described with a systems view, considering coupled systems rather than isolated contributions of individual sub-systems.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Voice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Alipour F.
        • Berry D.
        • Titze I.R.
        A finite-element model of vocal fold vibration.
        J Acoust Soc Am. 2000; 108: 3003-3012
        • Alipour F.
        • Scherer R.C.
        • Finnegan E.
        Measures of spectral slope using an excised larynx model.
        J Voice. 2012; 26: 403-411
        • Arneodo E.M.
        • Mindlin G.B.
        Source-tract coupling in birdsong production.
        Phys Rev E. 2009; 79
        • Arneodo E.M.
        • Sanz Perl Y.
        • Mindlin G.B.
        Acoustic signatures of sound source-tract coupling.
        Phys Rev E. 2011; 83
        • Austin S.F.
        • Titze I.R.
        The effect of subglottal resonance upon vocal fold vibration.
        Natl Center Voice Speech Status Progr Rep. 1994; 6: 33-41
        • Beckers G.J.
        • Suthers R.A.
        • Ten Cate C.
        Pure-tone birdsong by resonance filtering of harmonic overtones.
        Proc Natl Acad Sci USA. 2003; 100: 7372-7376
        • Berg van den J.
        Subglottic pressures and vibrations of the vocal folds.
        Folia Phoniatrica. 1957; 9: 65-71
        • Berg van den J.
        Sound production in isolated human larynges.
        Ann New York Acad Sci. 1968; 155: 18-27
        • Berry D.A.
        Mechanisms of modal and nonmodal phonation.
        Journal of Phonetics. 2001; 29: 431-450
        • Berry D.A.
        • Herzel H.
        • Titze I.R.
        • Krischer K.
        Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions.
        J Acoust Soc Am. 1994; 95: 3595-3604
        • Berry D.A.
        • Herzel H.
        • Titze I.R.
        • Story B.H.
        Bifurcations in excised larynx experiments.
        J Voice. 1996; 10: 129-138
        • Bouhuys A.
        • Mead J.
        • Proctor D.F.
        • Stevens K.N.
        Pressure-flow events during singing.
        Ann New York Acad Sci. 1968; 155: 165-176
        • Bradbury J.W.
        • Vehrencamp S.L.
        Principles of animal communication.
        Sinauer Associates, Sunderland, MA, 1998
        • Broad D.
        The new theories of vocal fold vibration.
        in: Lass N. Speech and language: advances in basic research and practice. Academic Press, New York1979
      1. Campbell M, Gilbert J, Myers A. The Science of Brass Instruments. Cham: Springer Nature; 2021.

        • Charlton B.D.
        • Frey R.
        • McKinnon A.J.
        • Fritsch G.
        • Fitch W.T.
        • Reby D.
        Koalas use a novel vocal organ to produce unusually low-pitched mating calls.
        Current Biology. 2013; 23: R1035-R1036
        • Charlton B.D.
        • Reby D.
        The evolution of acoustic size exaggeration in terrestrial mammals.
        Nat Commun. 2016; 7: 12739
        • Charlton B.D.
        • Taylor A.M.
        • Reby D.
        Function and evolution of vibrato-like frequency modulation in mammals.
        Curr Biol. 2017; 27: 2692-2697
      2. E3
        • Chatziioannou V.
        • Schmutzhard S.
        • Pàmies-Vilà M.
        • Hofmann A.
        Investigating clarinet articulation using a physical model and an artificial blowing machine.
        Acta Acustica United Acustica. 2019; 105: 682-694
        • Chi X.
        • Sonderegger M.
        Subglottal coupling and its influence on vowel formants.
        J Acoust Soc Am. 2007; 122: 1735
        • Chiba T.
        • Kajiyama M.
        The Vowel: Its Nature and Structure.
        Tokyo-Kaiseikan, Tokyo, Japan, 1941
        • Childers D.
        • Lee C.K.
        Vocal quality factors: analysis, synthesis, and perception.
        J Acoust Soc Am. 1991; 90: 2394-2410
        • Coffin B.
        Coffin’s Overtones of Bel Canto.
        The Scarecrow Press, Metuchen, N. J, 1980
        • Collyer S.
        • Davis P.J.
        • Thorpe C.W.
        • Callaghan J.
        Fundamental frequency influences the relationship between sound pressure level and spectral balance in female classically trained singers.
        J Acoust Soc Am. 2009; 126: 396-406
        • Cooper D.
        Research in laryngeal physiology with excised larynges.
        in: Cummings C.W. Fredrickson J.M. Harker L.A. Schuller D.E. Krause C.J. Otolaryngology - Head and Neck Surgery. vol. 2. C. V. Mosby, St. Louis and Toronto, 1986: 1728-1737
        • de Boer B.
        Air sacs and vocal fold vibration: Implications for evolution of speech.
        Theoria et historia scientiarum. 2012; 9: 13-28
        • Dedo H.H.
        • Dunker E.
        Husson’s theory. an experimental analysis of his research data and conclusions.
        Arch Otolaryngol (Chicago, Ill : 1960). 1967; 85: 303-313
        • Denes P.B.
        • Pinson E.N.
        Speech Chain, The: The Physics and Biology of Spoken Language.
        Anchor Press, Garden City, NY, 1963
        • Döllinger M.
        • Tayama N.
        • Berry D.A.
        Empirical eigenfunctions and medial surface dynamics of a human vocal fold.
        Methods Inf Med. 2005; 44: 384-391
        • Doval B.
        • D’Alessandro C.
        • Henrich N.
        The spectrum of glottal flow models.
        Acta Acustica United Acustica. 2006; 92: 1026-1046
        • Düring D.N.
        • Elemans C.P.H.
        Embodied motor control of avian vocal production.
        in: Suthers R.A. Fitch W.T. Fay R.R. Popper A.N. Vertebrate Sound Production and Acoustic Communication, chapter Ch. 5. Springer, Cham, 2016: 119-157
        • Elemans C.P.H.
        • Rasmussen J.H.
        • Herbst C.T.
        • Düring D.N.
        • Zollinger S.A.
        • Brumm H.
        • et al.
        Universal mechanisms of sound production and control in birds and mammals.
        Nat Commun. 2015; 6: 8978
        • Fant G.
        Acoustic theory of speech production.
        Mouton and Co., ‘s-Gravenhage, 1960
        • Fee M.S.
        • Shraiman B.
        • Pesaran B.
        • Mitra P.P.
        The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird.
        Nature. 1998; 395: 67-71
        • Ferrein A.
        De la formation de la voix de l’homme.
        Histoire de l’académie royale des sciences. 1741; : 409-432
        • Fitch W.T.
        • Neubauer J.
        • Herzel H.
        Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production.
        Anim Behav. 2002; 63: 407-418
        • Flanagan J.
        Source-system interaction in the vocal tract.
        Ann New York Acad Sci. 1968; 155: 9-17
        • Flanagan J.
        Speech Analysis: Synthesis and Perception (2nd ed.).
        Springer-Verlag, Berlin, 1972
        • Flanagan J.
        • Landgraf L.L.
        Self oscillating source for vocal tract synthesizers.
        IEEE Trans Audio Electroacoust. 1968; AU-16: 57-64
        • Fletcher N.H.
        • Rossing T.D.
        The physics of musical instruments.
        2nd. Springer-Verlag, New York, 1998
        • Fujimura O.
        Body-cover theory of the vocal fold and its phonetic implications.
        in: Stevens K.N. Hirano M. Vocal Fold Physiology. University of Tokyo Press, Tokyo, 1981: 271-288
        • Garcia M.
        • Herbst C.T.
        Excised larynx experimentation: history, current developments, and prospects for bioacoustical research.
        Anthropol Sci. 2018; 126: 9-17
        • Geng B.
        • Movahhedi M.
        • Xue Q.
        • Zheng X.
        Vocal fold vibration mode changes due to cricothyroid and thyroarytenoid muscle interaction in a three-dimensional model of the canine larynx.
        J Acoust Soc Am. 2021; 150: 1176
        • Håkansson J.
        • Jiang W.
        • Xue Q.
        • Zheng X.
        • Ding M.
        • Agarwal A.A.
        • et al.
        Aerodynamics and motor control of ultrasonic vocalizations for social communication in mice and rats.
        BMC Biol. 2022; 20: 3
        • Hanna N.
        • Smith J.
        • Wolfe J.
        How the acoustic resonances of the subglottal tract affect the impedance spectrum measured through the lips.
        J Acoust Soc Am. 2018; 143: 2639
        • Hatzikirou H.
        • Fitch W.T.
        • Herzel H.
        Voice instabilities due to source- tract interactions.
        Acta Acoustica United Acoustica. 2006; 92: 468-475
        • Herbst C.T.
        A review of singing voice subsystem interactions—toward an extended physiological model of “support”.
        J Voice. 2017; 31: 249.e13-249.e19
        • Herbst C.T.
        The snake pit of voice pedagogy part I: Proprioception, perception, and laryngeal mechanisms.
        J Singing. 2020; 77: 173-188
        • Herbst C.T.
        The snake pit of voice pedagogy part II: Mixed voice, vocal tract influences, individual teaching systems.
        J Singing. 2021; 77: 345-358
        • Herbst C.T.
        • Herzel H.
        • Švec J.G.
        • Wyman M.T.
        • Fitch W.T.
        Visualization of system dynamics using phasegrams.
        J R Soc Interface. 2013; 10: 1-14
        • Herbst C.T.
        • Stoeger A.S.
        • Frey R.
        • Lohscheller J.
        • Titze I.R.
        • Gumpenberger M.
        • et al.
        How low can you go? Physical production mechanism of elephant infrasonic vocalizations.
        Science. 2012; 337: 595-599
        • Herbst C.T.
        • Story B.H.
        Computer simulation of vocal tract resonance tuning strategies with respect to fundamental frequency and voice source spectral slope in singing.
        J Acoust Soc Am. 2022;
      3. In press
        • Herzel H.
        • Berry D.
        • Titze I.
        • Steinecke I.
        Nonlinear dynamics of the voice: Signal analysis and biomechanical modeling.
        Chaos. 1995; 5: 30-34
        • Hillenbrand J.
        • Getty L.A.
        • Clark M.J.
        • Wheeler K.
        Acoustic characteristics of American English vowels.
        J Acoust Soc Am. 1995; 97: 3099-3111
        • Horacek J.
        • Švec J.G.
        • Vesely J.
        Bifurkacní jevy pri kmitání lidských hlasivek – experimenty in vitro. [Bifurcation phenomena in vocal fold vibrations – experiments in vitro] (in czech).
        in: Zolotarev I. Proceedings Interaction and Feedbacks. 2003: 51-60
        • Howard D.M.
        • Angus J.A.S.
        Acoustics and Psychoacoustics.
        4th edition. Oxford University Press, Oxford, 2009
        • Husson R.
        Ètude des phénomènes physiologiques et acoustiques fondamentaux de la voix chantée. (Thesis).
        Paris, 1950
        • Ishizaka K.
        • Flanagan J.L.
        Synthesis of voiced sounds from a two-mass model of the vocal cords.
        Bell Syst Tech J. 1972; 51: 1233-1268
        • Ishizaka K.
        • Matsudaira M.
        What makes the vocal cords vibrate?.
        Reports of the 6th International Congress on Acoustics. Tokyo, 1968: B9-B12
        • Ishizaka K.
        • Matsudaira M.
        • Kaneko T.
        Input acoustic-impedance measurement of the subglottal system.
        J Acoust Soc Am. 1976; 60: 190-196
        • Isshiki N.
        Recent advances in phonosurgery.
        Folia Phoniatrica. 1980; 32: 119-154
        • Jakobsen L.
        • Christensen-Dalsgaard J.
        • Juhl P.M.
        • Elemans C.P.H.
        How loud can you go? Physical and physiological constraints to producing high sound pressures in animal vocalizations.
        Front Ecol Evol. 2021; 0: 325
        • Jiang J.J.
        • Chang C.I.B.
        • Raviv J.R.
        • Gupta S.
        • Banzali Jr F.M.
        • Hanson D.G.
        Quantitative study of mucosal wave via videokymography in canine larynges.
        Laryngoscope. 2000; 110: 1567-1573
        • Kaneko T.
        • Uchida K.
        • Suzuki H.
        • Komatsu K.
        • Kanesaka T.
        • Kobayashi N.
        • et al.
        Mechanical properties of the vocal fold: measurement in vivo.
        in: Stevens K.N. Hirano M. Vocal fold physiology. University of Tokyo Press, Tokyo, 1981: 365-376
        • Kelleher J.E.
        • Siegmund T.
        • Du M.
        • Naseri E.
        • Chan R.W.
        Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria.
        Biomech Model Mechanobiol. 2013; 12: 555-567
        • Kelly J.L.
        • Lochbaum C.C.
        Speech synthesis.
        Proceedings of the Fourth International Congress on Acoustics. Copenhagen, Danmark, 1962: 1-4
        • Kent R.D.
        • Vorperian H.K.
        Static measurements of vowel formant frequencies and bandwidths: A review.
        J Commun Disord. 2018; 74: 74-97
        • Klemuk S.A.
        • Riede T.
        • Walsh E.J.
        • Titze I.R.
        Adapted to roar: Functional morphology of tiger and lion vocal folds.
        Plos One. 2011; 6
        • Kob M.
        Singing voice modeling as we know it today.
        Acta Acustica united with Acustica. 2004; 90: 649-661
        • Koda H.
        • Nishimura T.
        • Tokuda I.T.
        • Oyakawa C.
        • Nihonmatsu T.
        • Masataka N.
        Soprano singing in gibbons.
        Am J Phys Anthropol. 2012; 149: 347-355
        • Kumar S.P.
        • Phadke K.V.
        • Vydrová J.
        • Novozámský A.
        • Zita A.
        • Zitová B.
        • et al.
        Visual and automatic evaluation of vocal fold mucosal waves through sharpness of lateral peaks in high-speed videokymographic images.
        J Voice. 2020; 34: 170-178
        • Kwong-Brown U.
        • Tobias M.L.
        • Elias D.O.
        • Hall I.C.
        • PH E.C.
        • Kelley D.B.
        The return to water in ancestral Xenopus was accompanied by a novel mechanism for producing and shaping vocal signals.
        eLIFE. 2019; 8
        • Ladefoged P.
        • McKinney N.
        Loudness, sound pressure, and subglottal pressure in speech.
        J Acoust Soc Am. 1963; 35: 454-460
        • Laje R.
        • Mindlin G.B.
        Modeling source-source and source-filter acoustic interaction in birdsong.
        Phys Rev E. 2005; 72
        • Lehoux H.
        • Hampala V.
        • Švec J.G.
        Subglottal pressure oscillations in anechoic and resonant conditions and their influence on excised larynx phonations.
        Scient Rep. 2021; 11: 1-14
        • Lindblom B.
        • Sundberg J.
        • Branderud P.
        • Djamshidpey H.
        The gunnar fant legacy in the study of vocal acoustics.
        In 10ème Congrès Français d’Acoustique. 2010; : 6
        • Lucero J.C.
        • Lourenco K.
        • Hermant N.
        • Van Hirtum A.
        • Pelorson X.
        Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds.
        J Acoust Soc Am. 2012; 132: 403-411
        • Maekawa K.
        From articulatory phonetics to the physics of speech: Contribution of Chiba and Kajiyama.
        Acoust Sci Technol. 2002; 23: 185-188
        • Mahrt E.
        • Agarwal A.
        • Perkel D.
        • Portfors C.
        • Elemans C.P.
        Mice produce ultrasonic vocalizations by intra-laryngeal planar impinging jets.
        Curr Biol. 2016; 26: R880-R881
        • Mergell P.
        • Herzel H.
        Modelling biphonation–the role of the vocal tract.
        Speech Commun. 1997; 22: 141-154
        • Migimatsu K.
        • Tokuda I.T.
        Experimental study on nonlinear source-filter interaction using synthetic vocal fold models.
        J Acoust Soc Am. 2019; 146: 983
        • Miller D.G.
        Resonance in Singing.
        Inside View Press, Princeton, NJ, 2008
        • Miller D.G.
        • Schutte H.K.
        Formant tuning in a professional baritone.
        J Voice. 1990; 4: 231-237
        • Müller J.
        Handbuch der Physiologie des Menschens, vol.2, sec.1, Von der Stimme und Sprache.
        Verlag von J. Hölscher, Coblenz, 1837
        • Müller J.
        Über die Compensation der physischen Kräfte am menschlichen Stimmorgan.
        Berlin, 1839
        • Murtola T.
        • Aalto A.
        • Malinen J.
        • Aalto D.
        • Vainio M.
        Modal locking between vocal fold oscillations and vocal tract acoustics.
        Acta Acustica united with Acustica. 2018; 104: 323-327
        • Neubauer J.
        Nonlinear dynamics of the voice: Bifurcations and mode analysis of complex spatio-temporal signals. Humboldt-Universität zu Berlin, 2004 (PhD thesis)
        • Rabiner L.R.
        • Schafer R.W.
        Digital processing of speech signals.
        Prentice-Hall, Englewood Cliffs, New Jersey, 1978
        • Remmers J.E.
        • Gautier H.
        Neural and mechanical mechanisms of feline purring.
        Resp Physiol. 1972; 16: 351-361
        • Riede T.
        • Suthers R.A.
        • Fletcher N.H.
        • Blevins W.E.
        Songbirds tune their vocal tract to the fundamental frequency of their song.
        Proceed Natl Acad Sci USA. 2006; 103: 5543-5548
        • Riede T.
        • Tokuda I.T.
        • Munger J.B.
        • Thomson S.L.
        Mammalian laryngseal air sacs add variability to the vocal tract impedance: physical and computational modeling.
        J Acoust Soc Am. 2008; 124: 634-647
        • Rothenberg M.
        Acoustic interaction between the glottal source and the vocal tract.
        in: Stevens K.N. Hirano M. Vocal Fold Physiology. University of Tokyo Press, Tokyo, 1981: 305-328
        • Samlan R.A.
        • Story B.H.
        Relation of structural and vibratory kinematics of the vocal folds to two acoustic measures of breathy voice based on computational modeling.
        J Speech Lang Hear Res. 2011; 54: 1267-1283
        • Schutte H.K.
        The efficiency of voice production. (Doctoral dissertation).
        Groningen, 1980
        • Schutte H.K.
        Historical approaches in revealing the singing voice, PART 1.
        The Oxford Handbook of Singing. 2019; : 964-990
        • Sissom D.
        • Rice D.
        • Peters G.
        How cats purr.
        Zool Soc London. 1991; 223: 67-78
        • Sjölander P.
        • Sundberg J.
        Spectrum effects of subglottal pressure variation in professional baritone singers.
        J Acoust Soc Am. 2004; 115: 1270-1273
        • Speed M.
        • Murphy D.T.
        • Howard D.M.
        Three-dimensional digital waveguide mesh simulation of cylindrical vocal tract analogs.
        IEEE Trans Audio Speech Lang Process. 2013; 21: 449-454
        • Stevens K.
        Physics of laryngeal behaviour and larynx modes.
        Phonetica. 1977; 34: 264-279
        • Stevens K.N.
        Acoustic Phonetics.
        The MIT Press, Cambridge, MA, 1998
        • Story B.
        An overview of the physiology, physics and modeling of the sound source for vowels.
        Acoust Sci & Tech. 2002; 23
        • Story B.
        • Laukkanen A.M.
        • Titze I.R.
        Acoustic impedance of an artificially lengthened and constricted vocal tract.
        J Voice. 2000; 14: 455-469
        • Story B.H.
        The vocal tract in singing.
        in: Howard D. Nix J. W. G. Oxford Handbook of Singing. Oxford University Press, Oxford, UK, 2019
        • Strogatz S.H.
        Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering.
        Westview Press, Cambridge, MA, 2000
        • Sundberg J.
        The acoustics of the singing voice.
        Scient Am. 1977; 236: 82-91
        • Sundberg J.
        • Andersson M.
        • Hultqvist C.
        Effects of subglottal pressure variation on professional baritone singers’ voice sources.
        J Acoust Soc Am. 1999; 105: 1965-1971
        • Sundberg J.
        • Högset C.
        Voice source differences between falsetto and modal registers in counter tenors, tenors and baritones.
        Log Phon Vocol. 2001; 26: 26-36
        • Sundberg J.
        • La F.M.
        • Gill B.P.
        Formant tuning strategies in professional male opera singers.
        J Voice. 2013; 27: 278-288
        • Sundberg J.
        • Titze I.
        • Scherer R.
        Phonatory control in male singing: a study of the effects of subglottal pressure, fundamental frequency, and mode of phonation on the voice source.
        J Voice. 1993; 7: 15-29
      4. Suthers RA, Fitch WT, Fay RR, Popper AN, editors. Vertebrate Sound Production and Acoustic Communication; vol. 53. Springer Handbook of Auditory Research. Springer International Publishing, Cham; 2016.

        • Suthers R.A.
        • Narins P.M.
        • Lin W.Y.
        • Schnitzler H.U.
        • Denzinger A.
        • Xu C.H.
        • et al.
        Voices of the dead: complex nonlinear vocal signals from the larynx of an ultrasonic frog.
        J Exp Biol. 2006; 209: 4984-4993
        • Švec J.G.
        • Horacek J.
        • Sram F.
        • Vesely J.
        Resonance properties of the vocal folds: in vivo laryngoscopic investigation of the externally excited laryngeal vibrations.
        J Acoust Soc Am. 2000; 108: 1397-1407
        • Švec J.G.
        • Schutte H.K.
        • J C.C.
        • Titze I.R.
        Integrative insights into the myoelastic-aerodynamic theory and acoustics of phonation. scientific tribute to Donald G. Miller.
        J Voice. 2021; (S0892-1997(21)00055-2)
        • Švec J.G.
        • Schutte H.K.
        • Miller D.G.
        On pitch jumps between chest and falsetto registers in voice: Data from living and excised human larynges.
        J Acoust Soc Am. 1999; 106: 1523-1531
        • Taylor A.
        • Charlton B.
        • Reby D.
        Vocal production by terrestrial mammals: Source, filter, and function.
        in: Suthers R.A. Fitch W.T. Fay R.R. Popper A.N. Vertebrate Sound Production and Acoustic Communication. Springer, Cham, 2016: 229-259
        • Tigges M.
        • Mergell P.
        • Herzel H.
        • Wittenberg T.
        • Eysholdt U.
        Observation and modelling of glottal biphonation.
        Acta Acustica united with Acustica. 1997; 83: 707-714
        • Titze I.R.
        Comments on the myoelastic - aerodynamic theory of phonation.
        J Speech Hear Res. 1980; 23: 495-510
        • Titze I.R.
        The physics of small-amplitude oscillation of the vocal folds.
        J Acoust Soc Am. 1988; 83: 1536-1552
        • Titze I.R.
        On the relation between subglottal pressure and fundamental frequency in phonation.
        J Acoust Soc Am. 1989; 85: 901-906
        • Titze I.R.
        Principles of voice production.
        National Center for Voice and Speech. 2nd edition. 2000
        • Titze I.R.
        Source-filter interaction in speaking and singing is nonlinear.
        Echoes Newslett Acoust Soc Am. 2007; 17: 1-3
        • Titze I.R.
        Nonlinear source-filter coupling in phonation: theory.
        J Acoust Soc Am. 2008; 123: 2733-2749
        • Titze I.R.
        Simulation of vocal loudness regulation with lung pressure, vocal fold adduction, and source-airway interaction.
        J Voice. 2021; (S0892-1997(20)30455-0)
        • Titze I.R.
        • Baken R.J.
        • Bozeman K.W.
        • Granqvist S.
        • Henrich N.
        • Herbst C.T.
        • et al.
        Toward a consensus on symbolic notation of harmonics, resonances, and formants in vocalization.
        J Acoust Soc Am. 2015; 137: 3005-3007
        • Titze I.R.
        • Baken R.J.
        • Herzel H.
        Evidence of chaos in vocal fold vibration.
        in: Titze I.R. Vocal fold physiology: frontiers in basic science. Singular Publishing Group, San Diego, CA, 1993: 143-188
        • Titze I.R.
        • Luschei E.S.
        • Hirano M.
        Role of the thyroarytenoid muscle in regulation of fundamental frequency.
        J Voice. 1989; 3: 213-224
        • Titze I.R.
        • Palaparthi A.
        Radiation efficiency for long-range vocal communication in mammals and birds.
        J Acoust Soc Am. 2018; 143: 2813-2824
        • Titze I.R.
        • Story B.H.
        Rules for controlling low-dimensional vocal fold models with muscle activation.
        J Acoust Soc Am. 2002; 112: 1064-1076
        • Titze I.R.
        • Strong W.J.
        Normal modes in vocal cord tissues.
        J Acoust Soc Am. 1975; 57: 736-749
        • Titze I.R.
        • Sundberg J.
        Vocal intensity in speakers and singers.
        J Acoust Soc Am. 1992; 91: 2936-2946
        • Tokuda I.T.
        • Horacek J.
        • Švec J.G.
        • Herzel H.
        Comparison of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments.
        J Acoust Soc Am. 2007; 122: 519-531
        • Tokuda I.T.
        • Zemke M.
        • Kob M.
        • Herzel H.
        Biomechanical modeling of register transitions and the role of vocal tract resonators.
        J Acoust Soc Am. 2010; 127: 1528-1536
        • Trendelenburg W.
        Untersuchungen zur Kenntnis der Registerbruchstellen beim Gesang.
        Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse. 1937; 28: 391-398
        • van den Berg J.
        Myoelastic-aerodynamic theory of voice production.
        J Speech Hearing Res. 1958; 3: 227-244
        • Wade L.
        • Hanna N.
        • Smith J.
        • Wolfe J.
        The role of vocal tract and subglottal resonances in producing vocal instabilities.
        J Acoust Soc Am. 2017; 141: 1546-1559
        • Weiss D.
        Zur Frage der Registerbruchstellen. Die Wirkung vorgeschalteter Resonanzröhren auf die Stimme.
        Zeitschrift für Hals-, Nasen- und Ohrenheilkunde. 1932; 70: 353-358
      5. Welch G, Howard DM, Nix J, editors. The Oxford Handbook of Singing. Oxford University Press, Oxford, New York; 2019.

        • Wilden I.
        • Herzel H.
        • Peters G.
        • Tembrock G.
        Subharmonics, biphonation, and deterministic chaos in mammal vocalization.
        Bioacoustics. 1998; 9: 171-196
        • Zhang Y.
        • Reynders W.J.
        • Jiang J.J.
        • Tateya I.
        Determination of phonation instability pressure and phonation pressure range in excised larynges.
        J Speech Lang Hearing Res. 2007; 50: 611-620
        • Zhang Z.
        Vibration in a self-oscillating vocal fold model with left-right asymmetry in body-layer stiffness.
        J Acoust Soc Am. 2010; 128: EL279-EL285
        • Zhang Z.
        Mechanics of human voice production and control.
        J Acoust Soc Am. 2016; 140: 2614
        • Zhang Z.
        • Neubauer J.
        • Berry D.A.
        Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model.
        J Sound Vibr. 2009; 322: 299-313