Abstract
Keywords
Introduction
- Zhang Z.
Physiology of the vocal folds and the voice production
- Calvache C.
- Solaque L.
- Velasco A.
- Peñuela L.
- Alipour F.
- Jaiswal S.
- Alipour-Haghighi F.
- Titze I.R.
- Zhang Z.
- Zhang Z.
Measurement of biomechanical properties
- Dion G.R.
- Jeswani S.
- Roof S.
- Fritz M.
- Coelho P.G.
- Sobieraj M.
- et al.
- Alipour-Haghighi F.
- Titze I.R.
Layer | Young’s modulus | Authors |
---|---|---|
Body | 5 kPa to 13 kPa | 19 |
6 kPa to 10 kPa | 20 | |
Cover | 10 kPa to 16 kPa | 21 |
25 kPa to 50 kPa | 1 | |
3.1 kPa to 4.9 kPa | 22
Indentation of poroviscoelastic vocal fold tissue using an atomic force microscope. Journal of the mechanical behavior of biomedical materials. 2013; 28: 383-392https://doi.org/10.1016/j.jmbbm.2013.05.026 | |
1.6 kPa to 5.7 kPa | 23
Nanoscale viscoelasticity of extracellular matrix proteins in soft tissues: A multiscale approach. Journal of the mechanical behavior of biomedical materials. 2014; 30: 196-204https://doi.org/10.1016/j.jmbbm.2013.10.022 |
- Yin J.
- Zhang Z.
Ultrasound Elastography
- Tsai C.-G.
- Chen J.-H.
- Shau Y.-W.
- Hsiao T.-Y.
- Tsui P.-H.
- Wan Y.-L.
- Chen C.-K.
- DeWall R.J.
- Chintada B.R.
- Subramani A.V.
- Raghavan B.
- Thittai A.K.
- Mohammadi N.
- Doyley M.M.
- Cetin M.
Material and methods
Experimental setup and measurement procedure

- Alipour F.
- Jaiswal S.
- Woo J.-W.
- Kim S.K.
- Park I.
- Choe J.H.
- Kim J.-H.
- Kim J.S.

Adduction | |||
---|---|---|---|
Elongation | 10 g 10 g | 30 g – 30 g | 50 g – 50 g |
10 g | M1, M4, M7 | M2 | M3 |
30 g | M5 | ||
70 g | M6 |
Elastography
with the 4-order stiffness tensor .
- Freutel M.
- Schmidt H.
- Dürselen L.
- Ignatius A.
- Galbusera F.
- Barbone P.E.
- Oberai A.A.
- Hall T.J.
- Barbone P.E.
- Oberai A.A.
- Hall T.J.
The non-linearity parameter was set , which has yielded to good results.
- Barbone P.E.
- Oberai A.A.
- Hall T.J.
- Barbone P.E.
- Oberai A.A.
- Hall T.J.
- Insana M.F.
- Hall T.J.
- Chaturvedi P.
- Kargel C.
Weinzaepfel P., Revaud J., Harchaoui Z., Schmid C.. Deepflow: Large displacement optical flow with deep matching. 2013. https://hal.inria.fr/hal-00873592/document.
- Jiang J.
- Hall T.J.
- Sommer A.M.
where and are the - and -components of the displacement field .
- Barbone P.E.
- Oberai A.A.
- Hall T.J.
- Love A.E.H.
- Yuan L.
- Pedersen P.C.
Results

Stretch measurement

Elastography




Statistical analysis

Discussion

Outlook & Conclusion
Acknowledgments
References
- Mechanical characterization of vocal fold tissue: a review study.Journal of Voice. 2014; 28: 657-667https://doi.org/10.1016/j.jvoice.2014.03.001
- Speech and voice science.third edition. Plural, San Diego CA2018
- Evaluation of voice pathology based on the estimation of vocal fold biomechanical parameters.Journal of Voice. 2007; 21: 450-476https://doi.org/10.1016/j.jvoice.2006.01.008
- Characteristics of phonation onset in a two-layer vocal fold model.The Journal of the Acoustical Society of America. 2009; 125: 1091-1102https://doi.org/10.1121/1.3050285
- Comparative histology and vibration of the vocal folds: implications for experimental studies in microlaryngeal surgery.The Laryngoscope. 2000; 110: 814-824https://doi.org/10.1097/00005537-200005000-00011
- Structure and mechanical properties of the vocal fold1 1a portion of this article was presented at the vocal fold physiology conference, kurume, japan, in january 1980.Speech and Language. 1982; 7: 271-297https://doi.org/10.1016/B978-0-12-608607-2.50015-7
- Biomechanical models to represent vocal physiology: A systematic review.Journal of Voice. 2021; https://doi.org/10.1016/j.jvoice.2021.02.014
- Morphological structure of the vocal cord as a vibrator and its variations.Folia phoniatrica. 1974; 26: 89-94https://doi.org/10.1159/000263771
- Development of excised larynx.Journal of Voice. 2020; 34: 38-43https://doi.org/10.1016/j.jvoice.2018.07.023
- A comparative study of the layer structure of the vocal fold: A morphological investigation of 11 mammalian species.Otologia Fukuoka. 1982; 28: 699-738
- Phonatory characteristics of excised pig, sheep, and cow larynges.The Journal of the Acoustical Society of America. 2008; 123: 4572-4581https://doi.org/10.1121/1.2908289
- Elastic models of vocal fold tissues.The Journal of the Acoustical Society of America. 1991; 90: 1326-1331https://doi.org/10.1121/1.401924
- Functional assessment of the ex vivo vocal folds through biomechanical testing: A review.Materials science & engineering C, Materials for biological applications. 2016; 64: 444-453https://doi.org/10.1016/j.msec.2016.04.018
- Dynamic biomechanical analysis of vocal folds using pipette aspiration technique.Sensors. 2021; 21: 2923https://doi.org/10.3390/s21092923
- Devices and methods on analysis of biomechanical properties of laryngeal tissue and substitute materials.Current Bioinformatics. 2011; 6: 344-361https://doi.org/10.2174/157489311796904718
- 3d multiscale imaging of human vocal folds using synchrotron x-ray microtomography in phase retrieval mode.Scientific Reports. 2018; 8: 14003https://doi.org/10.1038/s41598-018-31849-w
- New concepts in vocal fold imaging: a review.Journal of Voice. 2013; 27: 738-743https://doi.org/10.1016/j.jvoice.2013.05.011
- Mechanics of human vocal folds layers during finite strains in tension, compression and shear.Journal of biomechanics. 2020; 110: 109956https://doi.org/10.1016/j.jbiomech.2020.109956
- Dynamic nanomechanical analysis of the vocal fold structure in excised larynges.The Laryngoscope. 2017; 127: E225-E230https://doi.org/10.1002/lary.26410
- A validated model of passive muscle in compression.Journal of biomechanics. 2006; 39: 2999-3009https://doi.org/10.1016/j.jbiomech.2005.10.016
- Vocal fold elasticity in the pig, sheep, and cow larynges.Journal of Voice. 2011; 25: 130-136https://doi.org/10.1016/j.jvoice.2009.09.002
- Indentation of poroviscoelastic vocal fold tissue using an atomic force microscope.Journal of the mechanical behavior of biomedical materials. 2013; 28: 383-392https://doi.org/10.1016/j.jmbbm.2013.05.026
- Nanoscale viscoelasticity of extracellular matrix proteins in soft tissues: A multiscale approach.Journal of the mechanical behavior of biomedical materials. 2014; 30: 196-204https://doi.org/10.1016/j.jmbbm.2013.10.022
- Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model.The Journal of the Acoustical Society of America. 2017; 142: 2311https://doi.org/10.1121/1.5008497
- Influence of numerical model decisions on the flow-induced vibration of a computational vocal fold model.Computers & structures. 2013; 122: 44-54https://doi.org/10.1016/j.compstruc.2012.10.015
- Biaxial mechanical properties of human vocal fold cover under vocal fold elongation.The Journal of the Acoustical Society of America. 2017; 142: EL356https://doi.org/10.1121/1.5006205
- The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies.The Journal of the Acoustical Society of America. 2013; 133: 2972-2983https://doi.org/10.1121/1.4799809
- High-frequency sonographic measurements of true and false vocal cords.Journal of Ultrasound in Medicine. 2010; 29: 1023-1030https://doi.org/10.7863/jum.2010.29.7.1023
- Dynamic b-mode ultrasound imaging of vocal fold vibration during phonation.Ultrasound in medicine & biology. 2009; 35: 1812-1818https://doi.org/10.1016/j.ultrasmedbio.2009.06.002
- Elasticity of human vocal folds measured in vivo using color doppler imaging.Ultrasound in medicine & biology. 2002; 28: 1145-1152https://doi.org/10.1016/s0301-5629(02)00559-8
- Ultrasound imaging of the larynx and vocal folds: recent applications and developments.Current opinion in otolaryngology & head and neck surgery. 2012; 20: 437-442https://doi.org/10.1097/moo.0b013e32835896b4
- Shear wave elastography to assess false vocal folds in healthy adults: A feasibility study.Journal of Ultrasound in Medicine. 2018; 37: 2537-2544https://doi.org/10.1002/jum.14611
- Ultrasound strain imaging in assessment of false vocal folds in adults: A feasibility study.Clinical imaging. 2018; 51: 292-299https://doi.org/10.1016/j.clinimag.2018.05.013
- Tu-e-201c-01: Ultrasound elasticity evaluation of vocal cord function.Medical Physics. 2010; 37: 3404https://doi.org/10.1118/1.3469303
- Ultrasound elastography: Review of techniques and clinical applications.Theranostics. 2017; 7: 1303-1329https://doi.org/10.7150/thno.18650
- Ultrasound elastography: principles, techniques, and clinical applications.Critical Reviews in Biomedical Engineering. 2013; 41: 1-19https://doi.org/10.1615/CritRevBiomedEng.2013006991
- A novel elastographic frame quality indicator and its use in automatic representative-frame selection from a cine loop.Ultrasound in Medicine and Biology. 2017; 43: 258-272https://doi.org/10.1016/j.ultrasmedbio.2016.08.030
- Model-based elastography: a survey of approaches to the inverse elasticity problem.Physics in Medicine & Biology. 2012; 57: R35-73https://doi.org/10.1088/0031-9155/57/3/R35
- Estimation of shear modulus distribution in soft tissue from strain distribution.IEEE transactions on bio-medical engineering. 1995; 42: 193-202https://doi.org/10.1109/10.341832
- Elastic modulus imaging: on the uniqueness and nonuniqueness of the elastography inverse problem in two dimensions.Inverse Problems. 2004; 20: 283-296https://doi.org/10.1088/0266-5611/20/1/017
- Influence of poisson’s ratio on elastographic direct and inverse problems.Physics in Medicine & Biology. 2007; 52: 707-716https://doi.org/10.1088/0031-9155/52/3/012
- Evaluation of an iterative reconstruction method for quantitative elastography.Physics in Medicine & Biology. 2000; 45: 1521-1540https://doi.org/10.1088/0031-9155/45/6/309
- Solution of inverse problems in elasticity imaging using the adjoint method.Inverse Problems. 2003; 19: 297-313https://doi.org/10.1088/0266-5611/19/2/304
- OpenQSEI: A matlab package for quasi static elasticity imaging.SoftwareX. 2019; 9: 73-76https://doi.org/10.1016/j.softx.2019.01.004
- A statistical framework for model-based inverse problems in ultrasound elastography.2020 54th Asilomar Conference on Signals, Systems, and Computers. 978-0-7381-3126-9 IEEE, 2020: 1395-1399https://doi.org/10.1109/IEEECONF51394.2020.9443450
- Excised larynx experimentation: history, current developments, and prospects for bioacoustic research.Anthropological Science. 2018; 126: 9-17https://doi.org/10.1537/ase.171216
- Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues.Annals of biomedical engineering. 2003; 31: 482-491https://doi.org/10.1114/1.1561287
- Influence of glottal closure on the phonatory process in ex vivo porcine larynges.The Journal of the Acoustical Society of America. 2017; 142: 2197https://doi.org/10.1121/1.5007952
- A novel gel pad laryngeal ultrasound for vocal cord evaluation.Thyroid : official journal of the American Thyroid Association. 2017; 27: 553-557https://doi.org/10.1089/thy.2016.0402
- A simple tool to improve visualization of the vocal cords on translaryngeal ultrasound in male patients.World Journal of Surgery. 2021; 45: 1442-1445https://doi.org/10.1007/s00268-020-05946-9
- An image inpainting technique based on the fast marching method.Journal of Graphics Tools. 2004; 9: 23-34https://doi.org/10.1080/10867651.2004.10487596
- Least squares quantization in pcm.IEEE Transactions on Information Theory. 1982; 28: 129-137https://doi.org/10.1109/TIT.1982.1056489
- A quasi-static quantitative ultrasound elastography algorithm using optical flow.Sensors. 2021; 21: 3010https://doi.org/10.3390/s21093010
- Indentation testing of biological materials.Advanced structured materials. vol. 91. 9783319785332 Springer, Cham, Switzerland2018
- Finite element modeling of soft tissues: material models, tissue interaction and challenges.Clinical biomechanics (Bristol, Avon). 2014; 29: 363-372https://doi.org/10.1016/j.clinbiomech.2014.01.006
- Introduction to quasi-static elastography.in: Alam S.K. Garra B.S. Tissue Elasticity Imaging. 978-0-12-809661-1 Elsevier, Amsterdam2019: 61-83https://doi.org/10.1016/B978-0-12-809661-1.00004-2
- Linear and nonlinear elastic modulus imaging: an application to breast cancer diagnosis.IEEE transactions on medical imaging. 2012; 31: 1628-1637https://doi.org/10.1109/TMI.2012.2201497
- Determination of elastic modulus of gelatin gels by indentation experiments.Procedia Materials Science. 2015; 8: 287-296https://doi.org/10.1016/j.mspro.2015.04.075
- Tendon-motion tracking in an ultrasound image sequence using optical-flow-based block matching.BioMedical Engineering OnLine. 2017; 16: 47https://doi.org/10.1186/s12938-017-0335-x
- Ultrasonic properties of random media under uniaxial loading.The Journal of the Acoustical Society of America. 2001; 110: 3243-3251https://doi.org/10.1121/1.1414703
Weinzaepfel P., Revaud J., Harchaoui Z., Schmid C.. Deepflow: Large displacement optical flow with deep matching. 2013. https://hal.inria.fr/hal-00873592/document.
- A novel performance descriptor for ultrasonic strain imaging: a preliminary study.IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2006; 53: 1088-1102https://doi.org/10.1109/tuffc.2006.1642508
- Variance and covariance of accumulated displacement estimates.Ultrasonic imaging. 2013; 35: 90-108https://doi.org/10.1177/0161734613479246
- Full-field representation of discretely sampled surface deformation for displacement and strain analysis.Experimental Mechanics. 1991; 31: 168-177https://doi.org/10.1007/BF02327571
- Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements.Optics and Lasers in Engineering. 2009; 47: 865-874https://doi.org/10.1016/j.optlaseng.2008.10.014
- Application of iteration and finite element smoothing technique for displacement and strain measurement of digital speckle correlation.Optics and Lasers in Engineering. 2007; 45: 57-63https://doi.org/10.1016/j.optlaseng.2006.04.012
- A least-squares strain estimator for elastography.Ultrasonic imaging. 1997; 19: 195-208https://doi.org/10.1177/016173469701900303
- Full-field strain measurement using a two-dimensional savitzky-golay digital differentiator in digital image correlation.Optical Engineering. 2007; 46: 033601https://doi.org/10.1117/1.2714926
- Ix. the stress produced in a semi-infinite solid by pressure on part of the boundary.Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character. 1929; 228: 377-420https://doi.org/10.1098/rsta.1929.0009
- Love’s rectangular contact problem revisited: A complete solution.Tribology International. 2016; 103: 331-342https://doi.org/10.1016/j.triboint.2016.07.011
- Stress field calculation for quantitative ultrasound elastography via integration of force sensors.Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference [NEBEC 2010]. 9781424468799 IEEE, Piscataway, NJ2010: 1-2https://doi.org/10.1109/nebc.2010.5458125
- The role of the cricothyroid joint anatomy in cricothyroid approximation surgery.Journal of Voice. 2011; 25: 632-637https://doi.org/10.1016/j.jvoice.2010.06.001
- Elasticity: Theory and Applications.Elsevier Science & Technology and ProQuest, Saint Louis and Ann Arbor, Michigan1974
Ophir J., Kallel F., Varghese T., Bertrand M., Cspedes I., Ponnekanti H. Elastography: A systems approach. International Journal of Imaging Systems and Technology. 1997;8(1):89–103. doi:10.1002/(SICI)1098-1098(1997)8:1<89::AID-IMA11>3.0.CO;2-G
- High frequency ultrasonic characterization of human vocal fold tissue.The Journal of the Acoustical Society of America. 2007; 122: 1827https://doi.org/10.1121/1.2756759
Article info
Publication history
Publication stage
In Press Corrected ProofIdentification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy